ZERO OF A FUNCTION Find the zero of the function.
7. $f(x)=7.5 x-20$
8. $f(x)=-x+7$
9. $f(x)=\frac{1}{8} x+2$
10. $f(x)=17 x-68$
11. $f(x)=-0.5 x+0.75$
12. $f(x)=5 x-7$
13. ERROR ANALYSIS Describe and correct the error made in finding the zero of the function $y=2.3 x-2$.

$$
\begin{aligned}
& y=2.3(0)-2 \\
& y=-2
\end{aligned}
$$

14. TAKS REASONING Given the function $y=12.6 x+3$, for what x-value does $y=66$?
(A) 0.2
(B) 5
(C) 5.5
(D) 78.6
15. ERROR ANALYSIS Describe and correct the error in finding an equation of the best-fitting line using a graphing calculator.

LinReg
$y=a x+b$ $a=4.47$
$b=23.1$

$$
r^{2}=.9989451055
$$

$$
r=.9994724136
$$

16. TAKS REASONING Give an example of a real-life situation in which you can use linear interpolation to find the zero of a function. Explain what the zero means in this situation.
17. CHALLENGE A quantity increases rapidly for 10 years. During the next 10 years, the quantity decreases rapidly.
a. Can you fit a line to the data? Explain.
b. How could you model the data using more than one line? Explain the steps you could take.

PROBLEM SOLVING

: EXAMPLE 1 on p. 335
for Ex. 18
18. SAILBOATS Your school's sailing club wants to buy a sailboat. The table shows the lengths and costs of sailboats.

Length (feet)	11	12	14	14	16	22	23
Cost (dollars)	600	500	1900	1700	3500	6500	6000

a. Make a scatter plot of the data. Let x represent the length of the sailboat. Let y represent the cost of the sailboat.
b. Find an equation that models the cost (in dollars) of a sailboat as a function of its length (in feet).
c. Approximate the cost of a sailboat that is 20 feet long.

TEXAS @HomeTutor for problem solving help at classzone.com

