EXAMPLE 3 Predict using an equation

ANOTHER WAY
You can also predict the year by substituting 1.2 for y in the equation and solving for x :

$$
y=0.02 x+1.435
$$

$1.2=-0.02 x+1.435$
$x=11.75$

SOFTBALL The table shows the number of participants in U.S. youth softball during the period 1997-2001. Predict the year in which the number of youth softball participants reaches 1.2 million.

Year	1997	1998	1999	2000	2001
Participants (millions)	1.44	1.4	1.411	1.37	1.355

Solution

STEP 1 Perform linear regression. Let x represent the number of years since 1997, and let y represent the number of youth softball participants (in millions). The equation for the best-fitting line is approximately $y=-0.02 x+1.435$.
STEP 2 Graph the equation of the best-fitting line. Trace the line until the cursor reaches $y=1.2$. The corresponding x-value is shown at the bottom of the calculator screen.

- There will be 1.2 million participants about 12 years after 1997, or in 2009.

Guided Practice for Example 3

2. SOFTBALL In Example 3, in what year will there be 1.25 million youth softball participants in the U.S?

ZERO OF A FUNCTION A zero of a function $y=f(x)$ is an x-value for which $f(x)=0$ (or $y=0$). Because $y=0$ along the x-axis of the coordinate plane, a zero of a function is an x-intercept of the function's graph.

KEY CONCEPT

Relating Solutions of Equations, x-Intercepts of Graphs, and Zeros of Functions

In Chapter 3 you learned to solve an equation like $2 x-4=0$:

$$
\begin{aligned}
2 x-4 & =0 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

The solution of $2 x-4=0$ is 2 .

In Chapter 4 you found the x-intercept of the graph of a function like $y=2 x-4$:

Now you are finding the zero of a function like $f(x)=2 x-4$:

$$
\begin{aligned}
f(x) & =0 \\
2 x-4 & =0 \\
x & =2
\end{aligned}
$$

The zero of $f(x)=2 x-4$ is 2 .

