EXAMPLE 3 Write an equation to model data

BIRD POPULATIONS The table shows the number of active red-cockaded woodpecker clusters in a part of the De Soto National Forest in Mississippi. Write an equation that models the number of active clusters as a function of the number of years since 1990.

Year	1992	1993	1994	1995	1996	1997	1998	1999	2000
Active clusters	22	24	27	27	34	40	42	45	51

Solution

- *STEP* **1 Make** a scatter plot of the data. Let *x* represent the number of years since 1990. Let *y* represent the number of active clusters.
- *STEP 2* **Decide** whether the data can be modeled by a line. Because the scatter plot shows a positive correlation, you can fit a line to the data.
- *STEP 3* **Draw** a line that appears to fit the points in the scatter plot closely.

STEP 4 Write an equation using two points on the line. Use (2, 20) and (8, 42).

Find the slope of the line.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{42 - 20}{8 - 2} = \frac{22}{6} = \frac{11}{3}$$

Find the *y*-intercept of the line. Use the point (2, 20).

y = mx + b Write slope-intercept form.

 $20 = \frac{11}{3}(2) + b$ Substitute $\frac{11}{3}$ for *m*, 2 for *x*, and 20 for *y*.

 $\frac{38}{3} = b$

Solve for *b*.

An equation of the line of fit is $y = \frac{11}{3}x + \frac{38}{3}$.

- The number *y* of active woodpecker clusters can be modeled by the function $y = \frac{11}{3}x + \frac{38}{3}$ where *x* is the number of years since 1990.

Animated Algebra at classzone.com

GUIDED PRACTICE

CE for Example 3

3. Use the data in the table to write an equation that models *y* as a function of *x*.

	x	1	2	3	4	5	6	8
ls	у	3	5	8	9	11	12	14