EXAMPLE 3 Determine whether lines are perpendicular

STATE FLAG The Arizona state flag is shown in a coordinate plane. Lines a and b appear to be perpendicular. Are they?

Line a: $12 y=-7 x+42$
Line $b: 11 y=16 x-52$

Solution

Find the slopes of the lines. Write the equations in slope-intercept form.

Line $\boldsymbol{a}: 12 y=-7 x+42 \quad$ Line $\boldsymbol{b}: 11 y=16 x-52$

$$
y=-\frac{7}{12} x+\frac{42}{12} \quad y=\frac{16}{11} x-\frac{52}{11}
$$

- The slope of line a is $-\frac{7}{12}$. The slope of line b is $\frac{16}{11}$. The two slopes are not negative reciprocals, so lines a and b are not perpendicular.

EXAMPLE 4 Write an equation of a perpendicular line

Write an equation of the line that passes through $(4,-5)$ and is perpendicular to the line $y=2 x+3$.

Solution

STEP 1 Identify the slope. The graph of the given equation has a slope of 2. Because the slopes of perpendicular lines are negative reciprocals, the slope of the perpendicular line through $(4,-5)$ is $-\frac{1}{2}$.

STEP 2 Find the y-intercept. Use the slope and the given point.

$$
\begin{aligned}
y & =m x+b & & \text { Write slope-intercept form. } \\
-5 & =-\frac{1}{2}(4)+b & & \text { Substitute }-\frac{1}{2} \text { for } m, 4 \text { for } x \text {, and }-5 \text { for } y . \\
-3 & =b & & \text { Solve for } b .
\end{aligned}
$$

STEP 3 Write an equation.

$$
\begin{array}{ll}
y=m x+b & \text { Write slope-intercept form. } \\
y=-\frac{1}{2} x-3 & \text { Substitute }-\frac{1}{2} \text { for } m \text { and }-3 \text { for } b .
\end{array}
$$

Guided Practice for Examples 3 and 4

3. Is line a perpendicular to line b ? Justify your answer using slopes.

$$
\text { Line } \boldsymbol{a}: 2 y+x=-12 \quad \text { Line } b: 2 y=3 x-8
$$

4. Write an equation of the line that passes through $(4,3)$ and is perpendicular to the line $y=4 x-7$.
