5.4 Write Linear Equations in Standard Form

Before

You wrote equations in point-slope form.

Now

You will write equations in standard form.

Why?

So you can find possible combinations of objects, as in Ex. 41.

Key Vocabulary standard form, p. 215

Recall that the linear equation Ax + By = C is in standard form, where A, B, and C are real numbers and A and B are not both zero. All linear equations can be written in standard form.

EXAMPLE 1

Write equivalent equations in standard form

Write two equations in standard form that are equivalent to 2x - 6y = 4.

Solution

To write one equivalent equation, multiply each side by 2.

$$4x - 12y = 8$$

To write another equivalent equation, multiply each side by 0.5.

(1, 1)

-2)

$$x - 3y = 2$$

Write an equation from a graph **EXAMPLE 2**

Write an equation in standard form of the line shown.

Solution

STEP 1 Calculate the slope.

$$m = \frac{1 - (-2)}{1 - 2} = \frac{3}{-1} = -3$$

STEP 2 Write an equation in point-slope form. Use (1, 1).

$$y - y_1 = m(x - x_1)$$
 Write point-slope form.

$$y - 1 = -3(x - 1)$$
 Substitute 1 for y_{1} , -3 for m , and 1 for x_{1} .

STEP 3 Rewrite the equation in standard form.

$$3x + y = 4$$

Simplify. Collect variable terms on one side, constants on the other.

Animated Algebra at classzone.com

GUIDED PRACTICE

for Examples 1 and 2

- **1.** Write two equations in standard form that are equivalent to x y = 3.
- **2.** Write an equation in standard form of the line through (3, -1) and (2, -3).