FUNCTIONS Notice that the points plotted in Example 2 appear to lie on a line. In fact, an arithmetic sequence is a linear function. You can think of the common difference d as the slope and $\left(1, a_{1}\right)$ as a point on the graph of the function. An equation in point-slope form for the function is $a_{n}-a_{1}=d(n-1)$. This equation can be rewritten as $a_{n}=a_{1}+(n-1) d$.

KEY CONCEPT

For Your Notebook

Rule for an Arithmetic Sequence

The nth term of an arithmetic sequence with first term a_{1} and common difference d is given by $a_{n}=a_{1}+(n-1) d$.

EXAMPLE 3 Write a rule for the nth term of a sequence

Write a rule for the nth term of the sequence $-4,1,6,11,16, \ldots$.
Find a_{100}

Solution

The first term of the sequence is $a_{1}=-4$, and the common difference is $d=5$.

$$
\begin{array}{ll}
a_{n}=a_{1}+(n-1) d & \text { Write general rule for an arithmetic sequence. } \\
a_{n}=-4+(n-1) 5 & \text { Substitute }-4 \text { for } a_{1} \text { and } 5 \text { for } d .
\end{array}
$$

Find a_{100} by substituting 100 for n.

$$
\begin{aligned}
a_{n} & =-4+(n-1) 5 & & \text { Write the rule for the sequence. } \\
a_{100} & =-4+(100-1) 5 & & \text { Substitute } 100 \text { for } n . \\
a_{100} & =491 & & \text { Evaluate. }
\end{aligned}
$$

PRACTICE

EXAMPLE 1 on p. 309 for Exs. 1-3

EXAMPLE 2 on p. 309
for Exs. 4-9

EXAMPLE 3

on p. 310
for Exs. 10-15

Tell whether the sequence is arithmetic. If it is, find the next two terms. If it is not, explain why not.

1. $17,14,11,8,5, \ldots$
2. $1,4,16,64,256, \ldots$
3. $-8,-15,-22,-29,-36, \ldots$

Graph the sequence.

4. $1,4,7,11,14, \ldots$
5. $4,-3,-10,-17,-24, \ldots$
6. $5,-1,-7,-13,-19, \ldots$
7. $2,3 \frac{1}{2}, 5,6 \frac{1}{2}, 8, \ldots$
8. $0,2,4,6,8, \ldots$
9. $-3,-4,-5,-6,-7, \ldots$

Write a rule for the \boldsymbol{n} th term of the sequence. Find $\boldsymbol{a}_{\mathbf{1 0 0}}$.
10. $-12,-5,2,9,16, .$.
11. $51,72,93,114,135, \ldots$
12. $0.25,-0.75,-1.75,-2.75, \ldots$
13. $\frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \ldots$
14. $0,-5,-10,-15,-20, \ldots$
15. $1,1 \frac{1}{3}, 1 \frac{2}{3}, 2,2 \frac{1}{3}, \ldots$
16. REASONING For an arithmetic sequence with a first term of a_{1} and a common difference of d, show that $a_{n+1}-a_{n}=d$.

