FUNCTIONS Notice that the points plotted in Example 2 appear to lie on a line. In fact, an arithmetic sequence is a linear function. You can think of the common difference *d* as the slope and $(1, a_1)$ as a point on the graph of the function. An equation in point-slope form for the function is $a_n - a_1 = d(n - 1)$. This equation can be rewritten as $a_n = a_1 + (n - 1)d$.

KEY CONCEPT

For Your Notebook

Rule for an Arithmetic Sequence

The *n*th term of an arithmetic sequence with first term a_1 and common difference *d* is given by $a_n = a_1 + (n - 1)d$.

EXAMPLE 3 Write a rule for the *n*th term of a sequence

Write a rule for the *n*th term of the sequence -4, 1, 6, 11, 16, ... Find a_{100} .

Solution

The first term of the sequence is $a_1 = -4$, and the common difference is d = 5.

 $a_n = a_1 + (n-1)d$ Write general rule for an arithmetic sequence. $a_n = -4 + (n-1)5$ Substitute -4 for a_1 and 5 for d.

Find a_{100} by substituting 100 for *n*.

 $a_n = -4 + (n - 1)5$ Write the rule for the sequence. $a_{100} = -4 + (100 - 1)5$ Substitute 100 for *n*. $a_{100} = 491$ Evaluate.

PRACTICE

EXAMPLE 1 on p. 309 for Exs. 1–3	Tell whether the sequence is arithmetic. If it is, find the next two terms. If it is not, explain why not.		
	1. 17, 14, 11, 8, 5,	2. 1, 4, 16, 64, 256,	3. -8, -15, -22, -29, -36,
EXAMPLE 2 on p. 309 for Exs. 4–9	Graph the sequence.		
	4. 1, 4, 7, 11, 14,	5. 4, -3, -10, -17, -24,	6. 5, -1, -7, -13, -19,
	7. 2, $3\frac{1}{2}$, 5, $6\frac{1}{2}$, 8,	8. 0, 2, 4, 6, 8,	9. -3, -4, -5, -6, -7,
EXAMPLE 3 on p. 310 for Exs. 10–15	Write a rule for the <i>n</i> th term of the sequence. Find a_{100} .		
	10. -12, -5, 2, 9, 16,	11. 51, 72, 93, 114, 135,	12. 0.25, -0.75, -1.75, -2.75,
	13. $\frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \dots$	14. 0, -5, -10, -15, -20,	15. 1, $1\frac{1}{3}$, $1\frac{2}{3}$, 2, $2\frac{1}{3}$,
	16. REASONING For an arithmetic sequence with a first term of a_1 and a common difference of <i>d</i> , show that $a_{n+1} - a_n = d$.		