Extension

Use arter Lesson 5.3

Key Vocabulary

- sequence
- arithmetic sequence - common difference

Relate Arithmetic Sequences to Linear Functions
 teks A.1.D, A.3.B;

8.5.B

Goal Identify, graph, and write the general form of arithmetic sequences.

A sequence is an ordered list of numbers. The numbers in a sequence are called terms. In an arithmetic sequence, the difference between consecutive terms is constant. The constant difference is called the common difference.

An arithmetic sequence has the form $a_{1}, a_{1}+d, a_{1}+2 d, \ldots$ where a_{1} is the first term and d is the common difference. For instance, if $a_{1}=2$ and $d=6$, then the sequence $2,2+6,2+2(6), \ldots$ or $2,8,14, \ldots$ is arithmetic.

EXAMPLE 1 Identify an arithmetic sequence

Tell whether the sequence is arithmetic. If it is, find the next two terms.
a. $-4,1,6,11,16, \ldots$
b. $3,5,9,15,23, \ldots$

Solution

a. The first term is $a_{1}=-4$. Find the differences of consecutive terms.

$$
\begin{array}{ll}
a_{2}-a_{1}=1-(-4)=5 & a_{3}-a_{2}=6-1=5 \\
a_{4}-a_{3}=11-6=5 & a_{5}-a_{4}=16-11=5
\end{array}
$$

Because the terms have a common difference $(d=5)$, the sequence is arithmetic. The next two terms are $a_{6}=21$ and $a_{7}=26$.
b. The first term is $a_{1}=3$. Find the differences of consecutive terms.

$$
\begin{array}{ll}
a_{2}-a_{1}=5-3=2 & a_{3}-a_{2}=9-5=4 \\
a_{4}-a_{3}=15-9=6 & a_{5}-a_{4}=23-15=8
\end{array}
$$

- There is no common difference, so the sequence is not arithmetic.

GRAPHING A SEQUENCE To graph a sequence, let a term's position number in the sequence be the x-value. The term is the corresponding y-value.

EXAMPLE 2 Graph a sequence

Graph the sequence $-4,1,6,11,16, \ldots$
Make a table pairing each term with its position number.

Position, \boldsymbol{x}	1	2	3	4	5
Term, \boldsymbol{y}	-4	1	6	11	16

Plot the pairs in the table as points in a coordinate plane.

