Example 4 TAKS REASONING: Multi-Step Problem

STICKERS You are designing a sticker to advertise your band. A company charges $\$ 225$ for the first 1000 stickers and $\$ 80$ for each additional 1000 stickers. Write an equation that gives the total cost (in dollars) of stickers as a function of the number (in thousands) of stickers ordered. Find the cost of 9000 stickers.

Solution

STEP 1 Identify the rate of change and a data pair. Let C be the cost (in dollars) and s be the number of stickers (in thousands).

Rate of change, \boldsymbol{m} : $\$ 80$ per 1 thousand stickers Data pair (s_{1}, C_{1}): (1 thousand stickers, \$225)

STEP 2 Write an equation using point-slope form. Rewrite the equation in slope-intercept form so that cost is a function of the number of stickers.

$$
\begin{aligned}
C-C_{1} & =m\left(s-s_{1}\right) & & \text { Write point-slope form. } \\
C-\mathbf{2 2 5} & =\mathbf{8 0}(s-1) & & \text { Substitute } \mathbf{8 0} \text { for } m, \mathbf{1} \text { for } s_{1}, \text { and } 225 \text { for } C_{1} . \\
C & =80 s+145 & & \text { Solve for } C .
\end{aligned}
$$

STEP 3 Find the cost of 9000 stickers.

$$
C=80(9)+145=865 \quad \text { Substitute } 9 \text { for s. Simplify. }
$$

- The cost of 9000 stickers is $\$ 865$.

EXAMPLE 5 Write a real-world linear model from a table

WORKING RANCH The table shows the cost of visiting a working ranch for one day and night for different numbers of people. Can the situation be modeled by a linear equation? Explain. If possible, write an equation that gives the cost as a function of the number of people in the group.

Number of people	4	6	8	10	12
Cost (dollars)	250	350	450	550	650

Solution

STEP 1 Find the rate of change for consecutive data pairs in the table.
$\frac{350-250}{6-4}=50, \quad \frac{450-350}{8-6}=50, \quad \frac{550-450}{10-8}=50, \quad \frac{650-550}{12-10}=50$
Because the cost increases at a constant rate of $\$ 50$ per person, the situation can be modeled by a linear equation.

STEP 2 Use point-slope form to write the equation. Let C be the cost (in dollars) and p be the number of people. Use the data pair $(4,250)$.

$$
\begin{aligned}
C-C_{1} & =m\left(p-p_{1}\right) & & \text { Write point-slope form. } \\
C-250 & =50(p-4) & & \text { Substitute } 50 \text { for } m, 4 \text { for } p_{1^{\prime}} \text { and } 250 \text { for } C_{1} . \\
C & =50 p+50 & & \text { Solve for } C .
\end{aligned}
$$

