## EXAMPLE 2 Graph an equation in point-slope form

Graph the equation $y+2=\frac{2}{3}(x-3)$.

## Solution

Because the equation is in point-slope form, you know that the line has a slope of $\frac{2}{3}$ and passes through the point $(3,-2)$.

Plot the point (3, -2 ). Find a second point on the line using the slope. Draw a line through
 both points.

## Guided Practice

2. Graph the equation $y-1=-(x-2)$.

## EXAMPLE 3 Use point-slope form to write an equation

Write an equation in point-slope form of the line shown.

## Solution

STEP 1 Find the slope of the line.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{-1-1}=\frac{2}{-2}=-1
$$



STEP 2 Write the equation in point-slope form. You can use either given point.

$$
\text { Method } 1 \text { Use }(-1,3) . \quad \text { Method } 2 \text { Use }(1,1) .
$$

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-(x+1) & y-1=-(x-1)
\end{array}
$$

CHECK Check that the equations are equivalent by writing them in slope-intercept form.

$$
\begin{array}{rlrl}
y-3 & =-x-1 & y-1 & =-x+1 \\
y & =-x+2 & y & =-x+2
\end{array}
$$

AinimatedAlgebra activity at classzone.com

## Guided Practice for Example 3

3. Write an equation in point-slope form of the line that passes through the points $(2,3)$ and $(4,4)$.
