EXAMPLE 2 Solve a problem and look back

Solve the problem in Example 1 by carrying out the plan. Then check your answer.

Solution

STEP 3 Solve the Problem Write a verbal model. Then write an equation. Let s be the number of short blocks you run.

The equation is $0.1 s+0.6=2$. One way to solve the equation is to use the strategy guess, check, and revise.

Guess an even number that is easily multiplied by 0.1. Try 20.
Check whether 20 is a solution.

$$
\begin{aligned}
0.1 s+0.6 & =2 & & \text { Write equation. } \\
0.1(20)+0.6 & \stackrel{?}{=} 2 & & \text { Substitute } \mathbf{2 0} \text { for } s . \\
2.6 & =2 X & & \text { Simplify; } \mathbf{2} \text { does not check. }
\end{aligned}
$$

Revise. Because $2.6>2$, try an even number less than 20. Try 14.
Check whether 14 is a solution.

$$
\begin{array}{rlrl}
0.1 \mathrm{~s}+0.6 & =2 & & \text { Write equation. } \\
0.1(14)+0.6 & \stackrel{?}{=} 2 & & \text { Substitute } 14 \text { for } s . \\
2 & =2 \checkmark & \text { Simplify. }
\end{array}
$$

- To run 2 miles, you should run 14 short blocks along with the 4 long blocks you run.

STEP 4 Look Back Check your answer by making a table. You run 0.6 mile on long blocks. Each two short blocks add 0.2 mile.

Short blocks	0	2	4	6	8	10	12	14
Total distance	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0

The total distance is 2 miles when you run 4 long blocks and 14 short blocks. The answer in Step 3 is correct.

AnimatedAlgebra at classzone.com

Guided Practice for Examples 1 and 2

1. WHAT IF? In Example 1, suppose that you want to run a total distance of 3 miles. How many short blocks should you run?
