EXAMPLE 2 Solve a problem and look back

Solve the problem in Example 1 by carrying out the plan. Then check your answer.

Solution

REVIEW PROBLEM SOLVING

To review problem solving strategies, see p. 936.

The equation is 0.1s + 0.6 = 2. One way to solve the equation is to use the strategy *guess, check, and revise*.

Guess an even number that is easily multiplied by 0.1. Try 20.

Check whether 20 is a solution.

0.1s + 0.6 = 2 Write equation. $0.1(20) + 0.6 \stackrel{?}{=} 2$ Substitute 20 for *s*. $2.6 = 2 \times$ Simplify; 20 does not check.

Revise. Because 2.6 > 2, try an even number less than 20. Try 14.

Check whether 14 is a solution.

0.1s + 0.6 = 2 Write equation. $0.1(14) + 0.6 \stackrel{?}{=} 2$ Substitute 14 for *s*. $2 = 2 \checkmark$ Simplify.

To run 2 miles, you should run 14 short blocks along with the 4 long blocks you run.

STEP 4 Look Back Check your answer by making a table. You run 0.6 mile on long blocks. Each two short blocks add 0.2 mile.

Short blocks	0	2	4	6	8	10	12	14
Total distance	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0

The total distance is 2 miles when you run 4 long blocks and 14 short blocks. The answer in Step 3 is correct.

Animated Algebra at classzone.com

GUIDED PRACTICE for Examples 1 and 2

1. WHAT IF? In Example 1, suppose that you want to run a total distance of 3 miles. How many short blocks should you run?