USING A GRAPH Write an equation of the line shown.

EXAMPLE 3 on p. 284 for Exs. 18–29

USING TWO POINTS Write an equation of the line that passes through the given points.

24.	(-3, 1), (0, -8)	25. ((2, -7), (0, -5)	26.	(2, -4), (0, -4)
27.	(0, 4), (8, 3.5)	28. ((0, 5), (1.5, 1)	29.	(-6, 0), (0, -24)

EXAMPLE 4 on p. 284 for Exs. 30–38

WRITING FUNCTIONS Write an equation for the linear function f with the given values.

30. $f(0) = 2, f(2) = 4$	31. $f(0) = 7, f(3) = 1$	32. $f(0) = -2, f(4) = -3$
33. $f(0) = -1, f(5) = -5$	34. $f(-2) = 6, f(0) = -4$	35. $f(-6) = -1, f(0) = 3$
36. $f(4) = 13, f(0) = 21$	37. $f(0) = 9, f(3) = 0$	38. $f(0.2) = 1, f(0) = 0.6$

- **39. VISUAL THINKING** Write an equation of the line with a slope that is half the slope of the line shown and a *y*-intercept that is 2 less than the *y*-intercept of the line shown.
- **40. TAKS REASONING** *Describe* a real-world situation that can be modeled by the function y = 4x + 9.

USING A DIAGRAM OR TABLE Write an equation that represents the linear function shown in the mapping diagram or table.

- **43. WRITING** A line passes through the points (3, 5) and (3, -7). Is it possible to write an equation of the line in slope-intercept form? *Justify* your answer.
- **44. CHALLENGE** Show that the equation of the line that passes through the points (0, *b*) and (1, b + m) is y = mx + b. *Explain* how you can be sure that the point (-1, b m) also lies on the line.