Plot the point in a coordinate plane. Describe the location of the point.

1. $A(7,1)$
2. $B(-4,0)$
3. $C(3,-9)$

Draw the line that has the given intercepts.
4. x-intercept: 2
5. x-intercept: -1
y-intercept: 8
6. x-intercept: -3
y-intercept: -5

Find the slope of the line that passes through the points.
7. $(2,1)$ and $(8,4)$
8. $(-2,7)$ and $(0,-1)$
9. $(3,5)$ and $(3,14)$

Identify the slope and y-intercept of the line with the given equation.
10. $y=-\frac{3}{2} x-10$
11. $7 x+2 y=-28$
12. $3 x-8 y=48$

Tell whether the equation represents direct variation. If so, identify the constant of variation.
13. $x+4 y=4$
14. $-\frac{1}{3} x-y=0$
15. $3 x-3 y=0$

Graph the equation.
16. $x=3$
17. $y+x=6$
18. $2 x+8 y=-32$

Evaluate the function for the given value.
19. $f(x)=-4 x$ when $x=2.5$
20. $g(x)=\frac{5}{2} x-6$ when $x=-2$
21. BUSINESS To start a dog washing business, you invest $\$ 300$ in supplies. You charge $\$ 10$ per hour for your services. Your profit P (in dollars) for working t hours is given by $P=10 t-300$. Graph the equation. You will break even when your profit is $\$ 0$. Use the graph to find the number of hours you must work in order to break even.
22. PEDIATRICS The dose d (in milligrams) of a particular medicine that a pediatrician prescribes for a patient varies directly with the patient's mass m (in kilograms). The pediatrician recommends a dose of 150 mg of medicine for a patient whose mass is 30 kg .
a. Write a direct variation equation that relates m and d.
b. What would the dose of medicine be for a patient whose mass is 50 kg ?
23. SCISSOR LIFT The scissor lift is a device that can lower and raise a platform. The maximum and minimum heights of the platform of a particular scissor lift are shown. The scissor lift can raise the platform at a rate of 3.5 inches per second. The height of the platform after t seconds is given by $h(t)=3.5 t+48$. Graph the function and identify its domain and range.

