4 CHAPTER REVIEW

4.6 Model Direct Variation

EXAMPLE

Graph the direct variation equation $y=-\frac{2}{3} x$.
Plot a point at the origin. The slope is equal to the constant of variation, $-\frac{2}{3}$. Find and plot a second point, then draw a line through the points.

EXERCISES

EXAMPLES

1,2 , and 4
on pp. 253-255
for Exs. 22-28

Tell whether the equation represents direct variation. If so, identify the constant of variation.
22. $x-y=3$
23. $x+2 y=0$
24. $8 x-2 y=0$

Graph the direct variation equation.
25. $y=4 x$
26. $-5 y=3 x$
27. $4 x+3 y=0$
28. SNOWSTORMS The amount s (in inches) of snow that fell during a snowstorm varied directly with the duration d (in hours) of the storm. In the first 2 hours of the storm 5 inches of snow fell. Write a direct variation equation that relates d and s. How many inches of snow fell in 6 hours?

4.7 Graph Linear Functions

EXAMPLE

Evaluate the function $f(x)=-6 x+5$ when $x=3$.

$$
\begin{aligned}
f(x) & =-6 x+5 & & \text { Write function. } \\
f(3) & =-6(3)+5 & & \text { Substitute } 3 \text { for } x . \\
& =-13 & & \text { Simplify. }
\end{aligned}
$$

EXERCISES

EXAMPLES

1 and 3
on pp. 262-263
for Exs. 29-34

Evaluate the function.
29. $g(x)=2 x-3$ when $x=7$
30. $h(x)=-\frac{1}{2} x-7$ when $x=-6$

Graph the function. Compare the graph with the graph of $f(x)=\boldsymbol{x}$.
31. $j(x)=x-6$
32. $k(x)=-2.5 x$
33. $t(x)=2 x+1$
34. MOUNT EVEREST Mount Everest is rising at a rate of 2.4 inches per year. The number of inches that Mount Everest rises in x years is given by the function $f(x)=2.4 x$. Graph the function and identify its domain and range. Find the value of x so that $f(x)=250$. Explain what the solution means in this situation.

