4.4 Find Slope and Rate of Change

EXAMPLE

Find the slope of the line shown.
Let $\left(x_{1}, y_{1}\right)=(2,-3)$ and $\left(x_{2}, y_{2}\right)=(4,-4)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Write formula for slope. } \\
& =\frac{-4-(-3)}{4-2} & & \text { Substitute values. } \\
& =-\frac{1}{2} & & \text { Simplify. }
\end{aligned}
$$

EXAMPLES

$1,2,3$, and 4 on pp. 235-236
for Exs. 15-17

EXERCISES

Find the slope of the line that passes through the points.
15. $(-1,11)$ and $(2,10)$
16. $(-2,0)$ and $(4,9)$
17. $(-5,4)$ and $(1,-8)$

4.5 Graph Using Slope-Intercept Form

EXAMPLE

Graph the equation $2 x+y=-1$.
STEP 1 Rewrite the equation in slope-intercept form.

$$
2 x+y=-1 \rightarrow y=-2 x-1
$$

STEP 2 Identify the slope and the y-intercept.

$$
m=-2 \text { and } b=-1
$$

STEP 3 Plot the point that corresponds to the
 y-intercept, $(0,-1)$.
STEP 4 Use the slope to locate a second point on the line. Draw a line through the two points.

EXERCISES

EXAMPLES

2 and 3
on p. 245
for Exs. 18-21

Graph the equation.
18. $4 x-y=3$
19. $3 x-6 y=9$
20. $-3 x+4 y-12=0$
21. RUNNING One athlete can run a 60 meter race at an average rate of 7 meters per second. A second athlete can run the race at an average rate of 6 meters per second. The distance d (in meters) the athletes have left to run after t seconds is given by the following equations:

Athlete 1: $d=-7 t+60$
Athlete 2: $d=-6 t+60$
Graph both models in the same coordinate plane. About how many seconds faster does the first athlete finish the race than the second athlete?

