EXAMPLE 5 Graph real-world functions

REVIEW

TRANSFORMATIONS
For help with
transformations, see pp. 922-923.

CABLE A cable company charges new customers $\$ 40$ for installation and $\$ 60$ per month for its service. The cost to the customer is given by the function $f(x)=60 x+40$ where x is the number of months of service. To attract new customers, the cable company reduces the installation fee to $\$ 5$. A function for the cost with the reduced installation fee is $g(x)=60 x+5$. Graph both functions. How is the graph of g related to the graph of f ?

Solution

The graphs of both functions are shown. Both functions have a slope of 60 , so they are parallel. The y-intercept of the graph of g is 35 less than the graph of f. So, the graph of g is a vertical translation of the graph of f.

Guided Practice for Example 5

4. WHAT IF? In Example 5, suppose the monthly fee is $\$ 70$ so that the cost to the customer is given by $h(x)=70 x+40$. Graph f and h in the same coordinate plane. How is the graph of h related to the graph of f ?

4.7 EXERCISES

$\begin{array}{r:r}\text { HOMEWORK } & \text { = WORKED-OUT SOLUTIONS } \\ \text { KEY } & \begin{array}{l}\text { on } \mathrm{F} . \text { WS1 for Exs. 3, 17, and } 39\end{array}\end{array}$
= TAKS PRACTICE AND REASONING

SKILL PRACTICE

1. VOCABULARY When you write the function $y=3 x+12$ as $f(x)=3 x+12$, you are using \quad ? .
2. WRITING Would the functions $f(x)=-9 x+12, g(x)=-9 x-2$, and $h(x)=-9 x$ be considered a family of functions? Explain.

EXAMPLE 1 on p. 262
for Exs. 3-13

EVALUATING FUNCTIONS Evaluate the function when $\boldsymbol{x}=\mathbf{- 2 , 0}$, and 3 .
3. $f(x)=12 x+1$
4. $g(x)=-3 x+5$
5. $p(x)=-8 x-2$
6. $h(x)=2.25 x$
7. $m(x)=-6.5 x$
8. $f(x)=-0.75 x-1$
9. $s(x)=\frac{2}{5} x+3$
10. $d(x)=-\frac{3}{2} x+5$
11. $h(x)=\frac{3}{4} x-6$
12. ERROR ANALYSIS Describe and correct the error in evaluating the function $g(x)=-5 x+3$ when $x=-3$.

$$
\begin{aligned}
g(-3) & =-5(-3)+3 \\
-3 g & =18 \\
g & =-6
\end{aligned}
$$

