Graph the function. Compare the graph with the graph of $f(x)=\boldsymbol{x}$.
a. $g(x)=x+3$
b. $h(x)=2 x$

Solution

Because the graphs of g and f have the same slope, $m=1$, the lines are parallel. Also, the y-intercept of the graph of g is 3 more than the y-intercept of the graph of f.
b.

Because the slope of the graph of h is greater than the slope of the graph of f, the graph of h rises faster from left to right. The y-intercept for both graphs is 0 , so both lines pass through the origin.

Guided Practice for Example 4

3. Graph $h(x)=-3 x$. Compare the graph with the graph of $f(x)=x$.

CONCEPT SUMMARY

Comparing Graphs of Linear Functions with the Graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$

Changing m or b in the general linear function $g(x)=m x+b$ creates families of linear functions whose graphs are related to the graph of $f(x)=x$.
$g(x)=x+b$

- The graphs have the same slope, but different y-intercepts.
- Graphs of this family are vertical translations of the graph of $f(x)=x$.
$g(x)=m x$ where $m>0$

- The graphs have different (positive) slopes, but the same y-intercept.
- Graphs of this family are vertical stretches or shrinks of the graph of $f(x)=x$.
$g(x)=m x$ where $m<0$

- The graphs have different (negative) slopes, but the same y-intercept.
- Graphs of this family are vertical stretches or shrinks with reflections in the x-axis of the graph of $f(x)=x$.

