- **45. WULTIPLE REPRESENTATIONS** The total cost of riding the subway to and from school every day is \$1.50.
 - **a. Making a Table** Make a table that shows the number *d* of school days and the total cost *C* (in dollars) for trips to and from school for some values of *d*. Assume you travel to school once each school day and home from school once each school day.
 - **b.** Drawing a Graph Graph the ordered pairs from the table and draw a ray through them.
 - **c. Writing an Equation** Write an equation of the graph from part (b). Is it a direct variation equation? *Explain*. If there are 22 school days in one month, what will it cost to ride the subway to and from school for that month?

46. TAKS REASONING The table shows the average number of field goals attempted *t* and the average number of field goals made *m* per game for all NCAA Division I women's basketball teams for 9 consecutive seasons.

Attempted field goals, t	61.8	61.9	61.8	60.8	59.5	59.0	58.9	59.2	58.4
Field goals made, m	25.7	25.6	25.6	25.2	24.5	24.6	24.5	24.3	24.0

- **a. Write** Why is it reasonable to use a direct variation model for this situation? Write a direct variation equation that relates *t* and *m*. Find the constant of variation to the nearest tenth.
- **b. Estimate** The highest average number of attempted field goals in one season was 66.2. Estimate the number of field goals made that season.
- **c. Explain** If the average number of field goals made was increasing rather than decreasing and the number of attempted field goals continued to decrease, would the data show direct variation? *Explain*.
- **47. CHALLENGE** In Exercise 40, you found an equation showing that the distance traveled on a bike varies directly with the number of revolutions that the rear tire completes. The number *r* of tire revolutions varies directly with the number *p* of pedal revolutions. In a particular gear, you travel about 1.3 meters for every 5 revolutions of the pedals. Show that distance traveled varies directly with pedal revolutions.

