

Key Vocabulary

direct variation
constant of variation Two variables *x* and *y* show **direct variation** provided y = ax and $a \neq 0$. The nonzero number *a* is called the **constant of variation**, and *y* is said to *vary directly* with *x*.

The equation y = 5x is an example of direct variation, and the constant of variation is 5. The equation y = x + 5 is *not* an example of direct variation.

EXAMPLE 1 Identify direct variation equations

Tell whether the equation represents direct variation. If so, identify the constant of variation.

a. 2x - 3y = 0

b.
$$-x + y = 4$$

Solution

To tell whether an equation represents direct variation, try to rewrite the equation in the form y = ax.

a. 2x - 3y = 0 Write original equation. -3y = -2x Subtract 2x from each side. $y = \frac{2}{3}x$ Simplify.

Because the equation 2x - 3y = 0 can be rewritten in the form y = ax, it represents direct variation. The constant of variation is $\frac{2}{3}$.

b. -x + y = 4 Write original equation. y = x + 4 Add x to each side.

Because the equation -x + y = 4 cannot be rewritten in the form y = ax, it does not represent direct variation.

GUIDED PRACTICE for Example 1

Tell whether the equation represents direct variation. If so, identify the constant of variation.

1.
$$-x + y = 1$$
 2. $2x + y = 0$ **3.** $4x - 5y = 0$