

Solve Linear Equations by Graphing LEGG A.7.B

GOAL Use graphs to solve linear equations.

In Chapter 3, you learned how to solve linear equations in one variable algebraically. You can also solve linear equations graphically.

KEY CONCEPT

For Your Notebook

Steps for Solving Linear Equations Graphically

Use the following steps to solve a linear equation in one variable graphically.

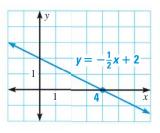
STEP 1 Write the equation in the form ax + b = 0.

STEP 2 Write the related function y = ax + b.

STEP 3 Graph the equation y = ax + b.

The solution of ax + b = 0 is the x-intercept of the graph of y = ax + b.

EXAMPLE 1 Solve an equation graphically


Solve $\frac{5}{2}x + 2 = 3x$ graphically. Check your solution algebraically.

Solution

STEP 1 Write the equation in the form ax + b = 0.

$$\frac{5}{2}x + 2 = 3x$$
 Write original equation.

$$-\frac{1}{2}x + 2 = 0$$
 Subtract 3x from each side.

- **STEP 2** Write the related function $y = -\frac{1}{2}x + 2$.
- **STEP 3** Graph the equation $y = -\frac{1}{2}x + 2$. The *x*-intercept is 4.
- ▶ The solution of $\frac{5}{2}x + 2 = 3x$ is 4.

CHECK Use substitution.

$$\frac{5}{2}x + 2 = 3x$$
 Write original equation.

$$\frac{5}{2}(4) + 2 \stackrel{?}{=} 3(4)$$
 Substitute 4 for x.

$$10 + 2 = 12$$
 Simplify.

$$12 = 12 \checkmark$$
 Solution checks.