EXAMPLE 2 Graph an equation using slope-intercept form

CHECK

REASONABLENESS
To check the line drawn in Example 2, substitute the coordinates of the second point into the original equation. You should get a true statement.

Graph the equation $2 x+y=3$.

Solution

STEP 1 Rewrite the equation in slope-intercept form.
$y=-2 x+3$
STEP 2 Identify the slope and the y-intercept.

$$
m=-2 \text { and } b=3
$$

STEP 3 Plot the point that corresponds to the y-intercept, (0, 3).

STEP 4 Use the slope to locate a second point on the line. Draw a line through the two points.

AinimatedAlgebra at classzone.com

MODELING In real-world problems that can be modeled by linear equations, the y-intercept is often an initial value, and the slope is a rate of change.

EXAMPLE 3 Change slopes of lines

ESCALATORS To get from one floor to another at a library, you can take either the stairs or the escalator. You can climb stairs at a rate of 1.75 feet per second, and the escalator rises at a rate of 2 feet per second. You have to travel a vertical distance of 28 feet. The equations model the vertical distance d (in feet) you have left to travel after t seconds.
Stairs: $d=-1.75 t+28 \quad$ Escalator: $d=-2 t+28$
a. Graph the equations in the same coordinate plane.
b. How much time do you save by taking the escalator?

Solution

a. Draw the graph of $d=-1.75 t+28$ using the fact that the d-intercept is 28 and the slope is -1.75 . Similarly, draw the graph of $d=-2 t+28$. The graphs make sense only in the first quadrant.
b. The equation $d=-1.75 t+28$ has a t-intercept of $\mathbf{1 6}$. The equation $d=-2 t+28$ has a t-intercept of 14 . So, you save $16-14=2$ seconds by taking the escalator.

Guided Practice for Examples 2 and 3

4. Graph the equation $y=-2 x+5$.
5. WHAT IF? In Example 3, suppose a person can climb stairs at a rate of 1.4 feet per second. How much time does taking the escalator save?
