NAME INTERCEPTS Because t is the independent variable, the horizontal axis is the t-axis, and you refer to the " t-intercept" of the graph of the function. Similarly, the vertical axis is the e-axis, and you refer to the " e-intercept."

EXAMPLE 5 Use a linear model

SUBMERSIBLES A submersible designed to explore the ocean floor is at an elevation of $-13,000$ feet (13,000 feet below sea level). The submersible ascends to the surface at an average rate of 650 feet per minute. The elevation e (in feet) of the submersible is given by the function

$$
e=650 t-13,000
$$

where t is the time (in minutes) since the submersible began to ascend.

- Find the intercepts of the graph of the function and state what the intercepts represent
- Graph the function and identify its domain and range.

Solution

STEP 1 Find the intercepts.

$$
\begin{array}{rl|l}
0 & =650 t-13,000 & e=650(0)-13,000 \\
13,000 & =650 t & e=-13,000 \leftarrow e \text {-intercept } \\
20 & =t \leftarrow t \text {-intercept } &
\end{array}
$$

The t-intercept represents the number of minutes the submersible takes to reach an elevation of 0 feet (sea level). The e-intercept represents the elevation of the submersible after 0 minutes (the time the ascent begins).

STEP 2 Graph the function using the intercepts.

The submersible starts at an elevation of $-13,000$ feet and ascends to an elevation of 0 feet. So, the range of the function is $-13,000 \leq e \leq 0$. From the graph, you can see that the domain of the function is $0 \leq t \leq 20$.
7. WHAT IF? In Example 5, suppose the elevation of a second submersible is given by $e=500 t-10,000$. Graph the function and identify its domain and range.

