EXAMPLE 2 Use intercepts to graph an equation

Graph the equation x + 2y = 4.

Solution

STEP 1 Find the intercepts.

$$x + 2y = 4$$

x + 2(0) = 4

$$x + 2y = 4$$
$$0 + 2y = 4$$

 $x = 4 \leftarrow x$ -intercept

 $y = 2 \leftarrow y$ -intercept

CHECK A GRAPH

Be sure to check the graph by finding a third solution of the equation and checking to see that the corresponding point is on the graph. *STEP 2* **Plot** points. The *x*-intercept is 4, so plot the point (4, 0). The *y*-intercept is 2, so plot the point (0, 2). Draw a line through the points.

Animated Algebra at classzone.com

EXAMPLE 3 Use a graph to find intercepts

The graph crosses the *x*-axis at (2, 0). The *x*-intercept is 2. The graph crosses the *y*-axis at (0, -1). The *y*-intercept is -1.

GUIDED PRACTICE for Examples 2 and 3

- **4.** Graph 6x + 7y = 42. Label the points where the line crosses the axes.
- **5.** Identify the *x*-intercept and the *y*-intercept of the graph shown at the right.

KEY CONCEPT		For Your Notebook
Relating Intercepts, Points, and Graphs		
Intercepts	Points	× ↓y
The <i>x</i> intercept of a graph is <i>a</i> .	The graph crosses the x -axis at (a , 0).	
The <i>y</i> -intercept of a graph is b .	The graph crosses the y-axis at (0 , <i>b</i>).	