43 Graph Using Intercepts
 A.5.B, A.6.B,

A.6.E, A.7.C

Before
Now
Why

You graphed a linear equation using a table of values. You will graph a linear equation using intercepts. So you can find a submersible's location, as in Example 5.

Key Vocabulary

- \boldsymbol{x}-intercept
- y-intercept

You can use the fact that two points determine a line to graph a linear equation. Two convenient points are the points where the graph crosses the axes.

An \boldsymbol{x}-intercept of a graph is the x-coordinate of a point where the graph crosses the x-axis. A \boldsymbol{y}-intercept of a graph is the y-coordinate of a point where the graph crosses the y-axis.

To find the x-intercept of the graph of a linear equation, find the value of x when $y=0$. To find the y-intercept of the graph, find the value of y when
 $x=0$.

EXAMPLE 1 Find the intercepts of the graph of an equation

Find the x-intercept and the y-intercept of the graph of $2 x+7 y=28$.

Solution

To find the x-intercept, substitute 0 for y and solve for x.

$$
\begin{aligned}
2 x+7 y & =28 & & \text { Write original equation. } \\
2 x+7(0) & =28 & & \text { Substitute } 0 \text { for } y . \\
x & =\frac{28}{2}=14 & & \text { Solve for } x .
\end{aligned}
$$

To find the y-intercept, substitute 0 for x and solve for y.

$$
\begin{aligned}
2 x+7 y & =28 & & \text { Write original equation. } \\
2(0)+7 y & =28 & & \text { Substitute } \mathbf{0} \text { for } \boldsymbol{x} . \\
y & =\frac{28}{7}=4 & & \text { Solve for } \boldsymbol{y} .
\end{aligned}
$$

The x-intercept is 14 . The y-intercept is 4 .

GUIDED PRACTICE for Example 1

Find the x-intercept and the y-intercept of the graph of the equation.

1. $3 x+2 y=6$
2. $4 x-2 y=10$
3. $-3 x+5 y=-15$
