

GUIDED PRACTICE	for Examples 2 and 3	
Graph the equation.		
2. $y + 3x = -2$	3. $y = 2.5$	4. $x = -4$

LINEAR FUNCTIONS In Example 3, y = 2 is a function, while x = -1 is not a function. The equation Ax + By = C represents a **linear function** provided $B \neq 0$ (that is, provided the graph of the equation is not a vertical line). If the domain of a linear function is not specified, it is understood to be all real numbers. The domain can be restricted, as shown in Example 4.

EXAMPLE 4 Graph a linear function

Graph the function $y = -\frac{1}{2}x + 4$ with domain $x \ge 0$. Then identify the range of the function.

Solution

STEP 1 Make a table.

STEP 2 **Plot** the points.

- *STEP 3* **Connect** the points with a ray because the domain is restricted.
- *STEP 4* **Identify** the range. From the graph, you can see that all points have a *y*-coordinate of 4 or less, so the range of the function is $y \le 4$.

GUIDED PRACTICE for Example 4

5. Graph the function y = -3x + 1 with domain $x \le 0$. Then identify the range of the function.

ANALYZE A FUNCTION

The function in Example 4 is called a *continuous* function. To learn about continuous functions, see p. 223.

.....