Equations of Horizontal and Vertical Lines

The graph of $y=b$ is a horizontal line. The line passes through the point $(0, b)$.

The graph of $x=a$ is a vertical line. The line passes through the point $(a, 0)$.

Guided Practice for Examples 2 and 3

Graph the equation.

2. $y+3 x=-2$
3. $y=2.5$
4. $x=-4$

LINEAR FUNCTIONS In Example 3, $y=2$ is a function, while $x=-1$ is not a function. The equation $A x+B y=C$ represents a linear function provided $B \neq 0$ (that is, provided the graph of the equation is not a vertical line). If the domain of a linear function is not specified, it is understood to be all real numbers. The domain can be restricted, as shown in Example 4.

EXAMPLE 4 Graph a linear function

Graph the function $y=-\frac{1}{2} x+4$ with domain $x \geq 0$. Then identify the range of the function.

Solution

STEP 1 Make a table.

x	0	2	4	6	8
y	4	3	2	1	0

STEP 2 Plot the points.

STEP 3 Connect the points with a ray because the domain is restricted.

ANALYZE A
FUNCTION
The function in Example 4 is called a continuous function. To learn about continuous functions, see p. 223.

STEP 4 Identify the range. From the graph, you can see that all points have a y-coordinate of 4 or less, so the range of the function is $y \leq 4$.

Guided Practice for Example 4

5. Graph the function $y=-3 x+1$ with domain $x \leq 0$. Then identify the range of the function.
