EXAMPLE 2 Graph an equation

Graph the equation -2x + y = -3.

Solution

STEP 1 Solve the equation for y.

$$-2x + y = -3$$

y = 2x - 3

DRAW A GRAPH

If you continued to find solutions of the equation and plotted them, the line would fill in.

x	-2	-1	0	1	2
y	-7	-5	-3	-1	1

STEP 3 **Plot** the points. Notice that the points appear to lie on a line.

STEP 4 Connect the points by drawing a line through them. Use arrows to indicate that the graph goes on without end.

LINEAR EQUATIONS A **linear equation** is an equation whose graph is a line, such as the equation in Example 2. The **standard form** of a linear equation is

$$Ax + By = C$$

where A, B, and C are real numbers and A and B are not both zero.

Consider what happens when A = 0 or when B = 0. When A = 0, the equation becomes By = C, or $y = \frac{C}{B}$. Because $\frac{C}{B}$ is a constant, you can write y = b. Similarly, when B = 0, the equation becomes Ax = C, or $x = \frac{C}{A}$, and you can write x = a.

EXAMPLE 3 Graph y = b and x = a

Graph (a) y = 2 and (b) x = -1.

Solution

a. For every value of *x*, the value of *y* is 2. The graph of the equation *y* = 2 is a horizontal line 2 units above the *x*-axis.

	y = 2				
	(-	2, 2)	(0, 2)	(3, 2)	
•	-	_			r
					л

b. For every value of *y*, the value of *x* is -1. The graph of the equation x = -1 is a vertical line 1 unit to the left of the *y*-axis.

FIND A SOLUTION

The equations y = 2and 0x + 1y = 2 are equivalent. For any value of *x*, the ordered pair (*x*, 2) is a solution of y = 2.