Extension
 Use after Lesson 4.1

Key Vocabulary

- transformation
- translation
- vertical stretch or shrink
- reflection

READ

TRANSFORMATIONS If a transformation is performed on a point A, the new location of point A is indicated by A^{\prime} (read "A prime").

Perform Transformations

TEKS a.1, a.2;
 8.6.B

GOAL Perform and describe transformations in a coordinate plane.
For a given set of points, a transformation produces an image by applying a rule to the coordinates of the points. Some types of transformations are translations, vertical stretches, vertical shrinks, and reflections.

A translation moves every point in a figure the same distance in the same direction either horizontally, vertically, or both. You can describe translations algebraically.

Horizontal translation: $(x, y) \rightarrow(x+h, y) \quad$ Vertical translation: $(x, y) \rightarrow(x, y+k)$

EXAMPLE 1 Perform a translation

The transformation $(x, y) \rightarrow(x, y+3)$ moves $\triangle A B C$ up 3 units.

Original		Image
$A(3,0)$	\rightarrow	$A^{\prime}(3,3)$
$B(4,2)$	\rightarrow	$B^{\prime}(4,5)$
$C(5,0)$	\rightarrow	$C^{\prime}(5,3)$

The result of the transformation is $\triangle A^{\prime} B^{\prime} C^{\prime}$.

A vertical stretch or shrink moves every point in a figure away from the x-axis (a vertical stretch) or toward the x-axis (a vertical shrink), while points on the x-axis remain fixed. A reflection flips a figure in a line. You can describe vertical stretches and shrinks with or without reflection in the x-axis algebraically.

Vertical stretch:
$(x, y) \rightarrow(x$, ay $)$ where $a>1$
Vertical stretch with reflection in the \boldsymbol{x}-axis:
$(x, y) \rightarrow(x$, ay $)$ where $a<-1$

Vertical shrink:
$(x, y) \rightarrow(x, a y)$ where $0<a<1$
Vertical shrink with reflection in the \boldsymbol{x}-axis:
$(x, y) \rightarrow(x$, ay $)$ where $-1<a<0$

EXAMPLE 2 Perform a vertical stretch with reflection

The transformation $(x, y) \rightarrow(x,-2 y)$ vertically stretches $\triangle A B C$ and reflects it in the x-axis.

Original		Image
$A(3,0)$	\rightarrow	$A^{\prime}(3,0)$
$B(4,2)$	\rightarrow	$B^{\prime}(4,-4)$
$C(5,0)$	\rightarrow	$C^{\prime}(5,0)$

The result of the transformation is $\triangle A^{\prime} B^{\prime} C^{\prime}$.

