PROPORTIONS A proportion is an equation that states that two ratios are equivalent. The general form of a proportion is given below.

$$
\begin{array}{ll}
\text { READING } & \frac{a}{b}=\frac{c}{d} \text { where } b \neq 0, d \neq 0 \\
\text { This proportion is read }
\end{array}
$$

EXAMPLE 2 Solve a proportion

Solve the proportion $\frac{11}{6}=\frac{x}{30}$.

$$
\begin{aligned}
\frac{11}{6} & =\frac{x}{30} & & \text { Write original proportion. } \\
30 \cdot \frac{11}{6} & =30 \cdot \frac{x}{30} & & \text { Multiply each side by } 30 . \\
\frac{330}{6} & =x & & \text { Simplify. } \\
55 & =x & & \text { Divide. }
\end{aligned}
$$

Guided Practice for Example 2

Solve the proportion. Check your solution.
3. $\frac{w}{35}=\frac{4}{7}$
4. $\frac{9}{2}=\frac{m}{12}$
5. $\frac{z}{54}=\frac{5}{9}$

SETTING UP A PROPORTION There are different ways to set up a proportion.
Consider the following problem.
A recipe for tomato salsa calls for 30 tomatoes to make 12 pints of salsa.
How many tomatoes are needed to make 4 pints of salsa?
The tables below show two ways of arranging the information from the problem. In each table, x represents the number of tomatoes needed to make 4 pints of salsa. The proportions follow from the tables.

```
AVOID ERRORS..................
You cannot write
a proportion that
compares pints to
tomatoes and
tomatoes to pints.
pints
```

	Tomatoes	Pints
Smaller recipe	x	4
Normal recipe	30	12

Proportion: $\frac{X}{30}=\frac{4}{12}$

	Smaller recipe	Normal recipe
Tomatoes	x	30
Pints	4	12

Proportion: $\frac{X}{4}=\frac{\mathbf{3 0}}{\mathbf{1 2}}$

