EXAMPLE 4 Solve an equation using multiplication

Solve $\frac{x}{4} = 5$.

Solution

$$\frac{x}{4} = 5$$
 Write original equation.

$$\mathbf{4} \cdot \frac{x}{4} = \mathbf{4} \cdot \mathbf{5}$$
 Multiply each side by 4.

$$x = 20$$
 Simplify.

GUIDED PRACTICE for Example 4

Solve the equation. Check your solution.

9.
$$\frac{t}{-3} = 9$$

10.
$$6 = \frac{c}{7}$$

11.
$$13 = \frac{z}{-2}$$

9.
$$\frac{t}{-3} = 9$$
 10. $6 = \frac{c}{7}$ **11.** $13 = \frac{z}{-2}$ **12.** $\frac{a}{5} = -11$

USING RECIPROCALS Recall that the product of a number and its reciprocal is 1. You can isolate a variable with a fractional coefficient by multiplying each side of the equation by the reciprocal of the fraction.

EXAMPLE 5 Solve an equation by multiplying by a reciprocal

Solve
$$-\frac{2}{7}x = 4$$
.

Solution

The coefficient of x is $-\frac{2}{7}$. The reciprocal of $-\frac{2}{7}$ is $-\frac{7}{2}$.

$$-\frac{2}{7}x = 4$$

$$-\frac{7}{2}\left(-\frac{2}{7}x\right) = -\frac{7}{2}(4)$$

 $-\frac{2}{7}x=4$ Write original equation. $-\frac{7}{2}\left(-\frac{2}{7}x\right)=-\frac{7}{2}(4)$ Multiply each side by the reciprocal, $-\frac{7}{2}$.

$$x = -14$$
 Simplify.

▶ The solution is -14. Check by substituting -14 for x in the original equation.

CHECK
$$-\frac{2}{7}x = 4$$
 Write original equation. $-\frac{2}{7}\left(-14\right) \stackrel{?}{=} 4$ Substitute -14 for x .

Simplify. Solution checks.

GUIDED PRACTICE for Example 5

Solve the equation. Check your solution.

13.
$$\frac{5}{6}w = 10$$

14.
$$\frac{2}{3}p = 14$$

15.
$$9 = -\frac{3}{4}m$$

13.
$$\frac{5}{6}w = 10$$
 14. $\frac{2}{3}p = 14$ **15.** $9 = -\frac{3}{4}m$ **16.** $-8 = -\frac{4}{5}v$

REVIEW

For help with finding

reciprocals, see p. 915.