DEDUCTIVE REASONING In Example 2, you simplified the expression at each step. Had you not done this, you would have obtained the expression $\frac{3(2x+8)}{6} - 4$. You can still show that $\frac{3(2x+8)}{6} - 4 = x$ by applying *deductive reasoning*. When you make a conclusion based on statements that are assumed or shown to be true, you are using **deductive reasoning**.

EXAMPLE 3 Use deductive reasoning

Show that $\frac{3(2x+8)}{6} - 4 = x$. Justify each step.

Solution

Step	Justification
$\frac{3(2x+8)}{6} - 4 = \frac{6x+24}{6} - 4$	Distributive property
=(x+4)-4	Divide $(6x + 24)$ by 6.
= (x + 4) + (-4)	Subtraction rule
= x + [4 + (-4)]	Associative property of addition
= x + 0	Inverse property of addition
= x	Identity property of addition

PRACTICE

In Exercises 1 and 2, perform the given number trick for three numbers. Make a conjecture based on the results. Then show that your conjecture is true for all numbers.

- 1. Choose any number. Then subtract 5. Then multiply by 6. Then divide by 3. Then add 10.
- **2.** Choose any number. Then double it. Then add 12. Then multiply by 4. Then divide by 8. Then subtract the number you chose.
- **3.** The steps below show that $\frac{4(3x+5)-20}{12} = x$. *Justify* each step.

$$\frac{4(3x+5)-20}{12} = \frac{(12x+20)-20}{12} \qquad ?$$
$$= \frac{(12x+20)+(-20)}{12} \qquad ?$$
$$= \frac{12x+[20+(-20)]}{12} \qquad ?$$

$$=\frac{12x+0}{12}$$

$$=\frac{12x}{12}$$