DEDUCTIVE REASONING In Example 2, you simplified the expression at each step. Had you not done this, you would have obtained the expression $\frac{3(2 x+8)}{6}-4$. You can still show that $\frac{3(2 x+8)}{6}-4=x$ by applying deductive reasoning. When you make a conclusion based on statements that are assumed or shown to be true, you are using deductive reasoning.

EXAMPLE 3 Use deductive reasoning

Show that $\frac{3(2 x+8)}{6}-4=x$. Justify each step.

Solution

	Step		
$\frac{3(2 x+8)}{6}-4$	$=\frac{6 x+24}{6}-4$		Justification
	$=(x+4)-4$		Distributive property
	$=(x+4)+(-4)$		Divide (6x+24) by 6.
	$=x+[4+(-4)]$		Subtraction rule
	$=x+0$		Insociative properse property of addition
	$=x$		Identity property of addition

PRACTICE

EXAMPLES

1,2 , and 3
on pp. 117-118
for Exs. 1-3

In Exercises 1 and 2, perform the given number trick for three numbers. Make a conjecture based on the results. Then show that your conjecture is true for all numbers.

1. Choose any number. Then subtract 5 . Then multiply by 6 . Then divide by 3 . Then add 10.
2. Choose any number. Then double it. Then add 12 . Then multiply by 4. Then divide by 8 . Then subtract the number you chose.
3. The steps below show that $\frac{4(3 x+5)-20}{12}=x$. Justify each step.

$$
\begin{array}{rlr}
\frac{4(3 x+5)-20}{12} & =\frac{(12 x+20)-20}{12} & \\
& =\frac{(12 x+20)+(-20)}{12} & \\
& =\frac{12 x+[20+(-20)]}{12} & \\
& =\frac{12 x+0}{12} & ? \\
& =\frac{12 x}{12} & ? \\
& =x & ?
\end{array}
$$

