54. MULTIPLE REPRESENTATIONS The diagram shows the approximate areas (in square meters) of the square bases for the pyramids of Giza.

a. Making a Table Make a table that gives the following quotients (rounded to the nearest tenth) for each of the 3 pairs of pyramids:

- (area of larger base) \div (area of smaller base)
- (side length of larger base) \div (side length of smaller base)

For each pair of pyramids, how are the two quotients related?
b. Writing an Equation Write an equation that gives the quotient q of the side lengths as a function of the quotient r of the areas.
55. Challenge Write an equation that gives the edge length ℓ of a cube as a function of the surface area A of the cube.

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

REVIEW

Lesson 1.6;
TAKS Workbook

REVIEW

Skills Review
Handbook p. 927;
TAKS Workbook
56. TAKS PRACTICE The graph of a function contains the point $(4,6)$. Which of the following could NOT be a rule for the function? TAKS Obj. 1
(A) $y=x+2$
(B) $y=\frac{2 x}{3}$
(C) $y=3 x-6$
(D) $y=4 x-10$
57. TAKS PRACTICE A cup in the shape of a cylinder has a height of 6 centimeters, and its base has a radius of 3 centimeters. How much water will fill the cup? TAKS Obj. 8
(F) $12 \pi \mathrm{~cm}^{3}$
(G) $18 \pi \mathrm{~cm}^{3}$
(H) $36 \pi \mathrm{~cm}^{3}$
(J) $54 \pi \mathrm{~cm}^{3}$

QUZ for Lessons 2.6-2.7

Find the quotient. (p. 103)

1. $-20 \div(-5)$
2. $-12 \div \frac{2}{3}$
3. $\frac{4}{5} \div\left(-\frac{3}{10}\right)$
4. $-18.2 \div(-3)$
5. Simplify the expression $\frac{15 x-6}{3}$. (p. 103)
6. Tell whether each of the following numbers is a real number, a rational number, an irrational number, an integer, or a whole number: $-3,-\sqrt{5}$, $-3.7, \sqrt{3}$. Then order the numbers from least to greatest. (p. 110)
7. Rewrite the following conditional statement in if-then form: "No irrational numbers are negative numbers." Tell whether the statement is true or false. If it is false, give a counterexample. (p. 110)
