CONDITIONAL STATEMENTS In the activity on page 109, you saw that a conditional statement not in if-then form can be written in that form.

EXAMPLE 5 Rewrite a conditional statement in if-then form

Rewrite the given conditional statement in if-then form. Then tell whether the statement is *true* or *false*. If it is false, give a counterexample.

Solution

a. Given: No integers are irrational numbers.

If-then form: If a number is an integer, then it is not an irrational number.

The statement is true.

b. Given: All real numbers are rational numbers.

If-then form: If a number is a real number, then it is a rational number.

The statement is false. For example, $\sqrt{2}$ is a real number but *not* a rational number.

GUIDED PRACTICE for Example 5

Rewrite the conditional statement in if-then form. Then tell whether the statement is *true* or *false*. If it is false, give a counterexample.

- 10. All square roots of perfect squares are rational numbers.
- 11. All repeating decimals are irrational numbers.
- 12. No integers are irrational numbers.

2.7 EXERCISES

Skill Practice

- **1. VOCABULARY** Copy and complete: The set of all rational and irrational numbers is called the set of <u>?</u>.
- **2. WRITING** Without calculating, how can you tell whether the square root of a whole number is rational or irrational?

EXAMPLE 1

on p. 110 for Exs. 3–14

EVALUATING SQUARE ROOTS Evaluate the expression.

3. $\sqrt{4}$	4. $-\sqrt{49}$	5. $-\sqrt{9}$	6. $\pm \sqrt{1}$
7. $\sqrt{196}$	8. $\pm \sqrt{121}$	9. $\pm \sqrt{2500}$	10. $-\sqrt{256}$
11. $-\sqrt{225}$	12. $\sqrt{361}$	13. $\pm\sqrt{169}$	14. $-\sqrt{1600}$