CONDITIONAL STATEMENTS In the activity on page 109, you saw that a conditional statement not in if-then form can be written in that form.

EXAMPLE 5 Rewrite a conditional statement in if-then form

Rewrite the given conditional statement in if-then form. Then tell whether the statement is true or false. If it is false, give a counterexample.

Solution

a. Given: No integers are irrational numbers.

If-then form: If a number is an integer, then it is not an irrational number.
The statement is true.
b. Given: All real numbers are rational numbers.

If-then form: If a number is a real number, then it is a rational number.
The statement is false. For example, $\sqrt{2}$ is a real number but not a rational number.

Guided Practice for Example 5

Rewrite the conditional statement in if-then form. Then tell whether the statement is true or false. If it is false, give a counterexample.
10. All square roots of perfect squares are rational numbers.
11. All repeating decimals are irrational numbers.
12. No integers are irrational numbers.

2.7 EXERCISES

HOMEWORK KEY	= WORKED-OUT SOLUTIONS on p. WS1 for Exs. 9, 19, and 49 = STANDARDIZED TEST PRACTICE Exs. 23, 42, 43, 50, 53, 56, and 57 = MULTIPLE REPRESENTATIONS Ex. 54

SkILL Practice

1. VOCABULARY Copy and complete: The set of all rational and irrational numbers is called the set of \qquad ?.
2. WRITING Without calculating, how can you tell whether the square root of a whole number is rational or irrational?

EXAMPLE 1 on p. 110 for Exs. 3-14

EVALUATING SQUARE ROOTS Evaluate the expression.
3. $\sqrt{4}$
4. $-\sqrt{49}$
5. $-\sqrt{9}$
6. $\pm \sqrt{1}$
7. $\sqrt{196}$
8. $\pm \sqrt{121}$
9. $\pm \sqrt{2500}$
10. $-\sqrt{256}$
11. $-\sqrt{225}$
12. $\sqrt{361}$
13. $\pm \sqrt{169}$
14. $-\sqrt{1600}$

