PERFECT SQUARES The square of an integer is called a perfect square. As shown in Example 1, the square root of a perfect square is an integer. As you will see in Example 2, you need to approximate a square root if the radicand is a whole number that is not a perfect square.

EXAMPLE 2 Approximate a square root

FURNITURE The top of a folding table is a square whose area is 945 square inches. Approximate the side length of the tabletop to the nearest inch.

Solution

You need to find the side length s of the tabletop such that $s^{2}=945$. This means that s is the positive square root of 945 . You can use a table to determine whether 945 is a perfect square.

Number	28	29	30	31	32
Square of number	784	841	900	961	1024

As shown in the table, 945 is not a perfect square. The greatest perfect square less than 945 is 900 . The least perfect square greater than 945 is 961 .

$$
\begin{array}{ll}
\begin{array}{ll}
900<945<961 & \begin{array}{l}
\text { Write a compound inequality that compares } 945 \text { with } \\
\text { both } 900 \text { and } 961 .
\end{array} \\
\sqrt{900}<\sqrt{945}<\sqrt{961} & \text { Take positive square root of each number. } \\
30<\sqrt{945}<31 & \text { Find square root of each perfect square. } \\
\text { Because } 945 \text { is closer to } 961 \text { than to } 900, \sqrt{945} \text { is closer to } 31 \text { than to } 30 . \\
\text { The side length of the tabletop is about } 31 \text { inches. }
\end{array}
\end{array}
$$

USING A CALCULATOR In Example 2, you can use a calculator to obtain a better approximation of the side length of the tabletop.

2nd $\sqrt{ } 945 \square$ ENTER

The side length is about 30.74 inches, which is closer to 31 than to 30 .

Guided Practice for Example 2

Approximate the square root to the nearest integer.
5. $\sqrt{32}$
6. $\sqrt{103}$
7. $-\sqrt{48}$
8. $-\sqrt{350}$

IRRATIONAL NUMBERS The square root of a whole number that is not a perfect square is an example of an irrational number. An irrational number, such as $\sqrt{945}=30.74085$. . . , is a number that cannot be written as a quotient of two integers. The decimal form of an irrational number neither terminates nor repeats.

