2.7 Find Square Roots and Compare Real Numbers
 a.1, a.6;
 8.1.C

Before
Now
Why? So you can find side lengths of geometric shapes, as in Ex. 54.

Key Vocabulary

- square root
- radicand
- perfect square
- irrational number
- real numbers

Recall that the square of 4 is $4^{2}=16$ and the square of -4 is $(-4)^{2}=16$. The numbers 4 and -4 are called the square roots of 16 . In this lesson, you will find the square roots of nonnegative numbers.

KEY CONCEPT

For Your Notebook

Square Root of a Number

Words If $b^{2}=a$, then b is a square root of a.
Example $3^{2}=9$ and $(-3)^{2}=9$, so 3 and -3 are square roots of 9 .

All positive real numbers have two square roots, a positive square root (or principal square root) and a negative square root. A square root is written with the radical symbol $\sqrt{ }$. The number or expression inside a radical symbol is the radicand.

Zero has only one square root, 0 . Negative real numbers do not have real square roots because the square of every real number is either positive or 0 .

EXAMPLE 1 Find square roots

Evaluate the expression.

READING

The symbol \pm is read as "plus or minus" and refers to both the positive square root and the negative square root.
a. $\pm \sqrt{36}= \pm 6$

The positive and negative square roots of 36 are 6 and -6.
b. $\sqrt{49}=7 \quad$ The positive square root of 49 is 7.
c. $-\sqrt{4}=-2 \quad$ The negative square root of 4 is $\mathbf{- 2}$.

GUIDED PRACTICE for Example 1

Evaluate the expression.

1. $-\sqrt{9}$
2. $\sqrt{25}$
3. $\pm \sqrt{64}$
4. $-\sqrt{81}$
