EXAMPLE 4 Simplify an expression

GUIDED PRACTICE for Examples 3 and 4

- **9.** Find the mean of the numbers -3, 4, 2.8, and -1.5.
- 10. TEMPERATURES Find the mean daily maximum temperature (in degrees Fahrenheit) in Barrow, Alaska, for the first 5 days of February 2004.

Day in February	1	2	3	4	5
Maximum temperature (°F)	-3	-20	-21	-22	-18

Simplify the expression.

11.
$$\frac{2x-8}{-4}$$
 12. $\frac{-6y+18}{3}$ **13.** $\frac{-10z-20}{-5}$

OPERATIONS ON REAL NUMBERS In this chapter, you saw how to find the sum, difference, product, and quotient of two real numbers a and b. You can use the values of *a* and *b* to determine whether the result is positive, negative, or 0.

CONCEPT SUMMARY

For Your Notebook

Rules for Addition, Subtraction, Multiplication, and Division

Let *a* and *b* be real numbers.

Expression	a + b	a – b	a · b	a ÷ b
Positive if	the number with the greater absolute value is positive.	a > b.	<i>a</i> and <i>b</i> have the same sign $(a \neq 0, b \neq 0)$.	a and b have the same sign $(a \neq 0, b \neq 0)$.
Negative if	the number with the greater absolute value is negative.	a < b.	<i>a</i> and <i>b</i> have different signs $(a \neq 0, b \neq 0)$.	<i>a</i> and <i>b</i> have different signs $(a \neq 0, b \neq 0)$.
Zero if	<i>a</i> and <i>b</i> are additive inverses.	<i>a</i> = <i>b</i> .	a = 0 or b = 0.	$a = 0$ and $b \neq 0$.