EXAMPLE 4 Simplify an expression

ANOTHER WAY		$\underline{36 x-24}=(36 x-24) \div 6$	Rewrite fraction as division.
You can simplify		$\frac{6}{6}-(36 x-24) \div 6$	Rewrite fraction as division.
the expression by first rewriting it as a		$=(36 x-24) \cdot \frac{1}{6}$	Division rule
difference of two fractions: $\frac{36 x-24}{6}=$		$=36 x \cdot \frac{1}{6}-24 \cdot \frac{1}{6}$	Distributive property
$\frac{36 x}{6}-\frac{24}{6}=6 x-4$.		$=6 x-4$	Simplify.

Guided Practice for Examples 3 and 4

9. Find the mean of the numbers $-3,4,2.8$, and -1.5 .
10. TEMPERATURES Find the mean daily maximum temperature (in degrees Fahrenheit) in Barrow, Alaska, for the first 5 days of February 2004.

Day in February	1	2	3	4	5
Maximum temperature $\left({ }^{\circ} \mathrm{F}\right)$	-3	-20	-21	-22	-18

Simplify the expression.

11. $\frac{2 x-8}{-4}$
12. $\frac{-6 y+18}{3}$
13. $\frac{-10 z-20}{-5}$

OPERATIONS ON REAL NUMBERS In this chapter, you saw how to find the sum, difference, product, and quotient of two real numbers a and b. You can use the values of a and b to determine whether the result is positive, negative, or 0 .

CONCEPT SUMMARY

For Your Notebook

Rules for Addition, Subtraction, Multiplication, and Division

Let a and b be real numbers.

Expression	$\boldsymbol{a}+\boldsymbol{b}$	$\boldsymbol{a}-\boldsymbol{b}$	$\boldsymbol{a} \cdot \boldsymbol{b}$	$\boldsymbol{a} \div \boldsymbol{b}$
Positive if...	the number with the greater absolute value is positive.	$a>b$.	a and b have the same sign $(a \neq 0, b \neq 0)$.	a and b have the same sign $(a \neq 0, b \neq 0)$.
Negative if...	the number with the greater absolute value is negative.	$a<b$.	a and b have different signs $(a \neq 0, b \neq 0)$.	a and b have different signs $(a \neq 0, b \neq 0)$.
Zero if...	a and b are additive inverses.	$a=b$.	$a=0$ or $b=0$.	$a=0$ and $b \neq 0$.

