

Key Vocabulary multiplicative

inverse

• reciprocal, p. 915

• mean, p. 918

Reciprocals like $\frac{2}{3}$ and $\frac{3}{2}$ have the property that their product is 1:

$$\frac{2}{3} \cdot \frac{3}{2} = 1$$

The reciprocal of a nonzero number *a*, written $\frac{1}{a}$, is called the

multiplicative inverse of *a*. Zero does not have a multiplicative inverse because there is no number *a* such that $0 \cdot a = 1$.

KEY CONCEPT

For Your Notebook

Inverse Property of Multiplication

Words The product of a nonzero number and its multiplicative inverse is 1.

- Algebra $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1, a \neq 0$ Example $8 \cdot \frac{1}{8} = 1$

EXAMPLE 1 Find multiplicative inverses of numbers

a. The multiplicative inverse of $-\frac{1}{5}$ is -5 because $-\frac{1}{5} \cdot (-5) = 1$. **b.** The multiplicative inverse of $-\frac{6}{7}$ is $-\frac{7}{6}$ because $-\frac{6}{7} \cdot \left(-\frac{7}{6}\right) = 1$.

WRITE INVERSES You can find the inverse

DIVISION Because the expressions $4 \div \frac{2}{3}$ and $4 \cdot \frac{3}{2}$ have the same value, 6, you can conclude that $4 \div \frac{2}{3} = 4 \cdot \frac{3}{2}$. This example illustrates the *division rule*.

For Your Notebook

Division Rule

KEY CONCEPT

Words To divide a number *a* by a nonzero number *b*, multiply *a* by the multiplicative inverse of b.

Algebra $a \div b = a \cdot \frac{1}{b}, b \neq 0$ Example $5 \div 2 = 5 \cdot \frac{1}{2}$