2.6 Divide Real Numbers
 a.1, a.6,
 A.4.B; 8.2.B

Before
Now
You multiplied real numbers.

Why? You will divide real numbers. So you can calculate volleyball statistics, as in Ex. 57.

Key Vocabulary

- multiplicative inverse
- reciprocal, p. 915
- mean, p. 918

Reciprocals like $\frac{2}{3}$ and $\frac{3}{2}$ have the property that their product is 1 :

$$
\frac{2}{3} \cdot \frac{3}{2}=1
$$

The reciprocal of a nonzero number a, written $\frac{1}{a}$, is called the multiplicative inverse of a. Zero does not have a multiplicative inverse because there is no number a such that $0 \cdot a=1$.

KEY CONCEPT

Inverse Property of Multiplication

Words The product of a nonzero number and its multiplicative inverse is 1.
Algebra $a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1, a \neq 0 \quad$ Example $8 \cdot \frac{1}{8}=1$

EXAMPLE 1 Find multiplicative inverses of numbers

WRITE INVERSES

You can find the inverse
a. The multiplicative inverse of $-\frac{1}{5}$ is -5 because $-\frac{1}{5} \cdot(-5)=1$.
b. The multiplicative inverse of $-\frac{6}{7}$ is $-\frac{7}{6}$ because $-\frac{6}{7} \cdot\left(-\frac{7}{6}\right)=1$. of $-\frac{6}{7}$ as follows:

$$
\begin{aligned}
\frac{1}{-\frac{6}{7}} \cdot 1 & =\frac{1}{-\frac{6}{7}} \cdot \frac{7}{7} \\
& =-\frac{7}{6}
\end{aligned}
$$

DIVISION Because the expressions $4 \div \frac{2}{3}$ and $4 \cdot \frac{3}{2}$ have the same value, 6 , you can conclude that $4 \div \frac{2}{3}=4 \cdot \frac{3}{2}$. This example illustrates the division rule.

KEY CONCEPT

For Your Notebook

Division Rule

Words To divide a number a by a nonzero number b, multiply a by the multiplicative inverse of b.
Algebra $a \div b=a \cdot \frac{1}{b}, b \neq 0 \quad$ Example $5 \div 2=5 \cdot \frac{1}{2}$

