Triangle Relationships mess s.9.a, , c.f.D, c.s.c

The sum of the angle measures of any triangle is 180°.

EXAMPLE Find the value of x.

$$
\begin{aligned}
60+35+x & =180 & & \text { The sum of the angle measures is } 180^{\circ} . \\
95+x & =180 & & \text { Simplify. } \\
x & =85 & & \text { Solve for } x .
\end{aligned}
$$

In a right triangle, the hypotenuse is the side opposite the right angle. The legs are the sides that form the right angle. The Pythagorean theorem states that the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse.

Pythagorean Theorem

$a^{2}+b^{2}=c^{2}$

EXAMPLE Find the value of \boldsymbol{x}.

a.

$$
\begin{aligned}
6^{2}+8^{2} & =x^{2} & & \text { Pythagorean theorem } \\
36+64 & =x^{2} & & \text { Simplify. } \\
100 & =x^{2} & & \text { Simplify. } \\
x & =10 \mathrm{ft} & & \text { Solve for } x .
\end{aligned}
$$

b.

$$
\begin{aligned}
x^{2}+12^{2} & =13^{2} & & \text { Pythagorea } \\
x^{2}+144 & =169 & & \text { Simplify } . \\
x^{2} & =25 & & \text { Solve for } x^{2} . \\
x & =5 \mathrm{~cm} & & \text { Solve for } x .
\end{aligned}
$$

PRACTICE

Find the value of \boldsymbol{x}.
1.

2.

3.

4.

5.

6.

7.

8.

9. A triangle with angles that measure x°, x°, and 70°

