Line Symmetry

A figure has line symmetry if a line, called a line of symmetry, divides the figure into two parts that are mirror images of each other. Below are four figures with their lines of symmetry shown in red.

Trapezoid No lines of symmetry	Isosceles Triangle 1 line of symmetry	 Rectangle 2 lines of symmetry	Regular Hexagon 6 lines of symmetry

EXAMPLE

A line of symmetry for the figure is shown in red. Find the coordinates of point A.

Point A is the mirror image of the point $(3,-6)$ with respect to the line of symmetry $y=-2$. The x-coordinate of A is 3 , the same as the x-coordinate of $(3,-6)$. Because -6 is the y-coordinate of $(3,-6)$, and $-2-(-6)=4$, the point $(3,-6)$ is down 4 units from the line of symmetry. Therefore, point A must be up 4 units from the line of symmetry. So, the y-coordinate of A is $-2+4=2$. The coordinates of point A are $(3,2)$.

PrACTICE

Tell how many lines of symmetry the figure has.
1.

2.

3.

7. A rhombus
4.

5. A parallelogram
6. A square
8. An equilateral triangle

A line of symmetry for the figure is shown in red. Find the coordinates of point A.
9.

10.

11.

