# Transformations 48.6.4.8.6.B

A **transformation** is a change made to the position or to the size of a figure. Each point (x, y) of the figure is mapped to a new point, and the new figure is called an **image**.

A **translation** is a transformation in which each point of a figure moves the same distance in the same direction. A figure and its translated image are congruent.

| Translation <i>a</i> Units Horizontally<br>and <i>b</i> Units Vertically |  |  |
|--------------------------------------------------------------------------|--|--|
| $(x, y) \rightarrow (x + a, y + b)$                                      |  |  |

| Example | Translate F |
|---------|-------------|
|         |             |

## **G**right 3 units and down 1 unit.

To move right 3 units, use a = 3. To move down 1 unit, use b = -1. So, use  $(x, y) \rightarrow (x + 3, y + (-1))$  with each endpoint.

 $F(2, 4) \rightarrow F'(2 + 3, 4 + (-1)) = F'(5, 3)$  $G(1, 1) \rightarrow G'(1 + 3, 1 + (-1)) = G'(4, 0)$ 



Graph the endpoints (5, 3) and (4, 0). Then draw the image.

A **reflection** is a transformation in which a figure is reflected, or flipped, in a line, called the **line of reflection**. A figure and its reflected image are congruent.

| Reflection in <i>x</i> -axis | Reflection in y-axis         |
|------------------------------|------------------------------|
| $(x, y) \rightarrow (x, -y)$ | $(x, y) \rightarrow (-x, y)$ |

#### EXAMPLE

**Reflect**  $\triangle$  *ABC* in the *v*-axis.

Use  $(x, y) \rightarrow (-x, y)$  with each vertex.

 $A(4,3) \rightarrow A'(-4,3)$ **Change each**  $B(1, 2) \rightarrow B'(-1, 2)$ x-coordinate  $C(3, 1) \rightarrow C'(-3, 1)$ to its opposite.

Graph the new vertices. Then draw the image.

A **rotation** is a transformation in which a figure is turned about a fixed point, called the **center of rotation**. The direction can be clockwise or counterclockwise. A figure and its rotated image are congruent.



| Rotation About the Origin |                               |  |
|---------------------------|-------------------------------|--|
| 180° either direction     | $(x, y) \rightarrow (-x, -y)$ |  |
| 90° clockwise             | $(x, y) \rightarrow (y, -x)$  |  |
| 90° counterclockwise      | $(x, y) \rightarrow (-y, x)$  |  |

### EXAMPLE

## Rotate RSTV 180° about the origin.

Use  $(x, y) \rightarrow (-x, -y)$  with each vertex.

 $R(2, 2) \rightarrow R'(-2, -2)$ Change every  $S(4, 2) \rightarrow S'(-4, -2)$ coordinate  $T(4, 1) \rightarrow T'(-4, -1)$ to its opposite.  $V(1, 0) \to V'(-1, 0)$ 

Graph the new vertices. Then draw the image.

