Transformations

A transformation is a change made to the position or to the size of a figure. Each point (x, y) of the figure is mapped to a new point, and the new figure is called an image.
A translation is a transformation in which each point of a figure moves the same distance in the same direction. A figure and its translated image are congruent.

Translation a Units Horizontally and \boldsymbol{b} Units Vertically
$(x, y) \rightarrow(x+a, y+b)$

EXAMPLE

Translate $\overline{F G}$ right 3 units and down 1 unit.
To move right 3 units, use $a=3$. To move down 1 unit, use $b=-1$. So, use $(x, y) \rightarrow(x+3, y+(-1))$ with each endpoint.

$$
\begin{aligned}
& F(2,4) \rightarrow F^{\prime}(2+3,4+(-1))=F^{\prime}(5,3) \\
& G(1,1) \rightarrow G^{\prime}(1+3,1+(-1))=G^{\prime}(4,0)
\end{aligned}
$$

Graph the endpoints $(5,3)$ and $(4,0)$. Then draw the image.

A reflection is a transformation in which a figure is reflected, or flipped, in a line, called the line of reflection. A figure and its reflected image are congruent.

Reflection in x-axis	Reflection in y-axis
$(x, y) \rightarrow(x,-y)$	$(x, y) \rightarrow(-x, y)$

EXAMPLE Reflect $\triangle A B C$ in the y-axis.

Use $(x, y) \rightarrow(-x, y)$ with each vertex.

$$
\begin{array}{ll}
A(4,3) \rightarrow A^{\prime}(-4,3) & \text { Change each } \\
B(1,2) \rightarrow B^{\prime}(-1,2) & x \text {-coordinate } \\
C(3,1) \rightarrow C^{\prime}(-3,1) & \text { to its opposite. }
\end{array}
$$

Graph the new vertices. Then draw the image.

A rotation is a transformation in which a figure is turned about a fixed point, called the center of rotation. The direction can be clockwise or counterclockwise. A figure and its rotated image are congruent.

Rotation About the Origin	
$\mathbf{1 8 0}^{\circ}$ either direction	$(x, y) \rightarrow(-x,-y)$
$\mathbf{9 0}^{\circ}$ clockwise	$(x, y) \rightarrow(y,-x)$
$\mathbf{9 0}^{\circ}$ counterclockwise	$(x, y) \rightarrow(-y, x)$

EXAMPLE Rotate RSTV 180° about the origin.

Use $(x, y) \rightarrow(-x,-y)$ with each vertex.

$$
\begin{array}{ll}
R(2,2) \rightarrow R^{\prime}(-2,-2) & \text { Change every } \\
S(4,2) \rightarrow S^{\prime}(-4,-2) & \text { coordinate } \\
T(4,1) \rightarrow T^{\prime}(-4,-1) & \text { to its opposite. }
\end{array}
$$

Graph the new vertices. Then draw the image.

