Binomial Products

A monomial is a number, a variable, or the product of a number and one or more variables. A binomial is the sum of two monomials. In other words, a binomial is a polynomial with two terms. You can use a geometric model to find the product of two binomials.

EXAMPLE Simplify $(2 x+1)(x+3)$.

Draw a rectangle with dimensions $2 x+1$ and $x+3$. Use the dimensions to divide the rectangle into parts. Then find the area of each part. The binomial product $(2 x+1)(x+3)$ is the sum of the areas of all the parts.

There are 2 blue parts with area $x^{2}, 7$ green parts with area x, and 3 yellow parts with area 1.

$$
(2 x+1)(x+3)=2 x^{2}+7 x+3
$$

Another way to find the product of two binomials is to use the distributive property systematically. Multiply the first terms, the outer terms, the inner terms, and the last terms of the binomials. This is called FOIL for the words First, Outer, Inner, and Last.

EXAMPLE Simplify $(x+2)(4 x-5)$.

	\quad First Outer Inner Last		
$(x+2)(4 x-5)$	$=x(4 x)+x(-5)+2(4 x)+2(-5)$		Use FOIL.
	$=4 x^{2}-5 x+8 x-10$		Multiply.
	$=4 x^{2}+3 x-10$		Combine like terms.

PRACTICE

Simplify.

1. $(a+5)(a+3)$
2. $(z+1)(z+6)$
3. $(m+4)(m+11)$
4. $(y+4)(y+2)$
5. $(y-2)^{2}$
6. $(n+6)^{2}$
7. $(a+10)(a-10)$
8. $(y+3)(y-7)$
9. $(5 x-4)(5 x+4)$
10. $(3+n)^{2}$
11. $(a+5)(a+5)$
12. $(7-z)(7+z)$
13. $(4 a+3)^{2}$
14. $(3-g)(2 g+3)$
15. $(3 n-1)(n-4)$
16. $(-a+9)(a-9)$
17. $(5 x+2)(2 x-5)$
18. $(2 d-5)(3 d-1)$
19. $(t+8)(t+7)$
20. $(x+9)(x+9)$
21. $(4-z)^{2}$
22. $(k+1)^{2}$
23. $(c+5)(2 c-7)$
24. $(3 x-8)(x-6)$
25. $(4-x)(8+x)$
26. $(8 x+1)(x+1)$
27. $(-4 z+3)(6 z-1)$
