Binomial Products 4.2.B

A **monomial** is a number, a variable, or the product of a number and one or more variables. A **binomial** is the sum of two monomials. In other words, a binomial is a polynomial with two terms. You can use a geometric model to find the product of two binomials.

EXAMPLE

Simplify (2x + 1)(x + 3).

Draw a rectangle with dimensions 2x + 1 and x + 3. Use the dimensions to divide the rectangle into parts. Then find the area of each part. The binomial product (2x + 1)(x + 3) is the sum of the areas of all the parts.

There are 2 blue parts with area x^2 , 7 green parts with area x, and 3 yellow parts with area 1.

$$(2x+1)(x+3) = 2x^2 + 7x + 3$$

Another way to find the product of two binomials is to use the distributive property systematically. Multiply the *first* terms, the *outer* terms, the *inner* terms, and the *last* terms of the binomials. This is called **FOIL** for the words **First**, **O**uter, Inner, and Last.

EXAMPLE

Simplify (x + 2)(4x - 5).

FirstOuterInnerLast||||(x + 2)(4x - 5) = x(4x) + x(-5) + 2(4x) + 2(-5)Use FOIL. $= 4x^2 - 5x + 8x - 10$ Multiply. $= 4x^2 + 3x - 10$ Combine like terms.

PRACTICE

Simplify.

1.	(a+5)(a+3)	2.	(m + 4)(m + 11)	3.	(t+8)(t+7)
4.	(z + 1)(z + 6)	5.	(y + 4)(y + 2)	6.	(x + 9)(x + 9)
7.	$(y-2)^2$	8.	$(n + 6)^2$	9.	$(4-z)^2$
10.	(a + 10)(a - 10)	11.	(y + 3)(y - 7)	12.	$(k + 1)^2$
13.	(5x - 4)(5x + 4)	14.	$(3+n)^2$	15.	(c + 5)(2c - 7)
16.	(a+5)(a+5)	17.	(7-z)(7+z)	18.	(3x - 8)(x - 6)
19.	$(4a + 3)^2$	20.	(3 - g)(2g + 3)	21.	(4-x)(8+x)
22.	(3n-1)(n-4)	23.	(-a+9)(a-9)	24.	(8x + 1)(x + 1)
25.	(5x + 2)(2x - 5)	26.	(2d-5)(3d-1)	27.	(-4z+3)(6z-1)