Significant Digits

<mark>Significant digits</mark> indicate how precisely a number is known. Use the following guidelines to determine the number of significant digits.

- All nonzero digits are significant.
- All zeros that appear between two nonzero digits are significant.
- For a decimal, all zeros that appear after the last nonzero digit are significant. For a whole number, you cannot tell whether any zeros after the last nonzero digit are significant, so you should assume that they are not significant.

Sometimes calculations involve measurements that have various numbers of significant digits. In this case, a general rule is to carry all digits through the calculation and then round the result to the same number of significant digits as the measurement with the *fewest* significant digits. When you calculate with units that cannot be divided into fractional parts, such as number of people, consider only the significant digits of the other number(s).

EXAMPLE

Perform the calculation. Write your answer with the appropriate number of significant digits.

a.	12.6	3 significant digits	b.	840	2 significant digits
	$\times 0.05$	1 significant digit		+ 702	3 significant digits
	0.63	The product has 2 significant digits.		1542	The sum has 4 significant digits.
	0.6	Round to 1 significant digit.		1500	Round to 2 significant digits.

c. \$61.20 restaurant bill ÷ 6 people

The number of people is exact, so consider only the 4 significant digits of the bill, \$61.20. The answer should have 4 significant digits.

\$61.20 ÷ 6 = **\$10.20**

▶ Each person pays \$10.20.

PRACTICE

Perform the calculation. Write your answer with the appropriate number of significant digits.

1.	600 + 30	2. 5 – 2.6	3.	12 • 6.75	4.	0.098 + 0.14 + 0.369		
5.	3.6053 - 1.720	6. 40 ÷ 3.5	7.	8.0 - 3.1	8.	31.7 • 6.8 • 0.435		
9.	30.5 • 6.40	10. 3.18 + 2.0005	11.	$0.088 \div 2.44$	12.	8650 + 380 - 49		
13.	4016 - 3007	14. 1.35 + 14.8	15.	320 ÷ 18	16.	$38.1 \cdot 3.04 \div 0.024$		
17.	\$1.45 per notebook • 12 notebooks			18. 10.0 liters of water -4.5 liters of water				
19.	260 pints of milk ÷ 106 students			20. 0.5 yard of fabric + 0.87 yard of fabric				
21.	27,973 books ÷ 11 libraries			22. 12.76 gallons of gas $+$ 6.08 gallons of gas				
23.	\$6.95 per ticket • 180 t	24.	24. 1540 pounds – 160 pounds – 85 pounds					