55. TAKS REASONING At a basketball game, a person has a chance to win 1 million dollars by making a half court shot. The distance from half court to the point below the 10 -foot-high basketball rim is 41.75 feet.
a. Write an equation that models the path of the basketball if the person releases the ball 6 feet high with an initial speed of 40 feet per second.
b. Simplify the equation. Use a calculator to find the angles at which the person can make the half court shot.
c. Assume the person releases the ball at one of the angles found in part (b). What other assumption(s) must you make to say that the shot is made?
56. CHALLENGE A rectangle is inscribed in a semicircle with radius 1 , as shown. What value of θ creates the rectangle with the largest area?

Mixed Review for TAKS

TAKS PRACTICE at classzone.com

REVIEW
Skills Review
Handbook p. 994
TAKS Workbook

REVIEW

 Lesson 13.2TAKS Workbook
57. TAKS PRACTICE $\angle M N O$ and $\angle P Q R$ are supplementary angles. Which of the following statements is true? TAKS Obj. 10
(A) $\angle M N O=\angle P Q R$
(B) $\angle M N O \perp \angle P Q R$
(C) $m \angle M N O+m \angle P Q R=90^{\circ}$
(D) $m \angle M N O+m \angle P Q R=180^{\circ}$
58. TAKS PRACTICE What is the approximate length of arc MN? TAKS Obj. 8
(F) 30.5 ft
(G) 33.0 ft
(H) 39.6 ft
(J) 55.0 ft

QUIZ for Lessons 14.6-14.7

Find the exact value of the expression. (pp.949, 955)

1. $\sin \frac{\pi}{12}$
2. $\sin \left(-22.5^{\circ}\right)$
3. $\tan \left(-345^{\circ}\right)$
4. $\cos \frac{\pi}{8}$

Solve the equation for $0 \leq x<\mathbf{2 \pi}$.
5. $\sin \left(x+\frac{\pi}{2}\right)-\sin \left(x-\frac{\pi}{2}\right)=0($ (p. 949)
6. $\cos 2 x=3 \sin x+2(p .955)$

Find the exact values of $\sin \frac{a}{2}, \cos \frac{a}{2}$, and $\tan 2 a .(p .955)$
7. $\tan a=\frac{3}{5}, 0<a<\frac{\pi}{2}$
8. $\cos a=-\frac{4}{7}, \pi<a<\frac{3 \pi}{2}$
9. FOOTBALL Use the formula $x=\frac{1}{32} v^{2} \sin 2 \theta$ to find the horizontal distance x (in feet) that a football travels if it is kicked from ground level with an initial speed of 25 feet per second at an angle of 30°. (p. 955)

