PATH OF A PROJECTILE The path traveled by an object that is projected at an initial height of h_{0} feet, an initial speed of v feet per second, and an initial angle θ is given by

$$
y=-\frac{16}{v^{2} \cos ^{2} \theta} x^{2}+(\tan \theta) x+h_{0}
$$

where x is the horizontal distance (in feet) and y is the vertical distance (in feet). (This model neglects air resistance.)

EXAMPLE 4 Derive a trigonometric model

SOCCER Write an equation for the horizontal distance traveled by a soccer ball kicked from ground level $\left(h_{0}=0\right)$ at speed v and angle θ.

Solution

$$
-\frac{16}{v^{2} \cos ^{2} \theta} x^{2}+(\tan \theta) x+0=0 \quad \text { Let } \boldsymbol{h}_{0}=0
$$

USE ZERO PRODUCT PROPERTY
One solution of this equation is $x=0$, which corresponds to the point where the ball leaves the ground. This solution is ignored in later steps, because the problem requires finding where the ball lands.

Factor.

Zero product property

$$
\frac{16}{v^{2} \cos ^{2} \theta} x=\tan \theta \quad \text { Add } \tan \theta \text { to each side. }
$$

$$
x=\frac{1}{16} v^{2} \cos ^{2} \theta \tan \theta \quad \text { Multiply each side by } \frac{1}{16} v^{2} \cos ^{2} \theta
$$

$$
x=\frac{1}{16} v^{2} \cos \theta \sin \theta \quad \text { Use } \cos \theta \tan \theta=\sin \theta
$$

$$
x=\frac{1}{32} v^{2}(2 \cos \theta \sin \theta) \quad \text { Rewrite } \frac{1}{16} \text { as } \frac{1}{32} \cdot 2
$$

$$
x=\frac{1}{32} v^{2} \sin 2 \boldsymbol{\theta} \quad \text { Use a double-angle formula. }
$$

GUIDED PRACTICE for Example 4

9. WHAT IF? Suppose you kick a soccer ball from ground level with an initial speed of 70 feet per second. Can you make the ball travel 200 feet?
10. REASONING Use the equation $x=\frac{1}{32} v^{2} \sin 2 \theta$ to explain why the projection angle that maximizes the distance a soccer ball travels is $\theta=45^{\circ}$.
