PATH OF A PROJECTILE The path traveled by an object that is projected at an initial height of h_0 feet, an initial speed of v feet per second, and an initial angle θ is given by

$$y = -\frac{16}{v^2 \cos^2 \theta} x^2 + (\tan \theta) x + h_0$$

where *x* is the horizontal distance (in feet) and *y* is the vertical distance (in feet). (This model neglects air resistance.)

EXAMPLE 4 Derive a trigonometric model

SOCCER Write an equation for the horizontal distance traveled by a soccer ball kicked from ground level ($h_0 = 0$) at speed v and angle θ .

Solution

$-\frac{16}{\nu^2\cos^2\theta}x^2 + (\tan\theta)x + 0 = 0$	Let $h_0 = 0$.
$\rightarrow -x\left(\frac{16}{\nu^2\cos^2\theta}x - \tan\theta\right) = 0$	Factor.
$\frac{16}{\nu^2 \cos^2 \theta} x - \tan \theta = 0$	Zero product property
$\frac{16}{\nu^2 \cos^2 \theta} x = \tan \theta$	Add tan θ to each side.
$x = \frac{1}{16}\nu^2 \cos^2\theta \tan\theta$	Multiply each side by $\frac{1}{16}v^2\cos^2\theta$.
$x = \frac{1}{16}\nu^2\cos\theta\sin\theta$	Use $\cos \theta \tan \theta = \sin \theta$.
$x = \frac{1}{32}\nu^2 \left(2\cos\theta\sin\theta\right)$	Rewrite $\frac{1}{16}$ as $\frac{1}{32} \cdot 2$.
$x = \frac{1}{32}\nu^2 \sin 2\theta$	Use a double-angle formula.

USE ZERO PRODUCT PROPERTY One solution of this

equation is x = 0, which corresponds to the point where the ball leaves the ground. This solution is ignored in later steps, because the problem requires finding where the ball *lands*.

GUIDED PRACTICE for Example 4

- **9. WHAT IF?** Suppose you kick a soccer ball from ground level with an initial speed of 70 feet per second. Can you make the ball travel 200 feet?
- **10. REASONING** Use the equation $x = \frac{1}{32}v^2 \sin 2\theta$ to explain why the projection angle that maximizes the distance a soccer ball travels is $\theta = 45^\circ$.