19. TAKS REASONING What is an equation of the graph shown at the right?
(A) $y=-3 \cos \frac{\pi}{6} x+12$
(B) $y=-5 \cos \frac{\pi}{6} x+10$
(C) $y=3 \sin \frac{\pi}{6} x+12$
(D) $y=-5 \sin \frac{\pi}{6} x+10$

20. WRITING Any sinusoid can be modeled by both a sine function and a cosine function. Therefore, you can choose the type of function that is more convenient. Explain which type of function you would choose to model a sinusoid whose y-intercept occurs at the minimum value of the function.
21. REASONING Model the sinusoid in Example 1 on page 941 with a cosine function of the form $y=a \cos b(x-h)+k$. Use identities to show that the model you found is equivalent to the sine model in Example 1.
22. ChALLENGE Write a sine function for the sinusoid with a minimum at $\left(\frac{\pi}{2}, 3\right)$ and a maximum at $\left(\frac{\pi}{4}, 8\right)$.

PROBLEM SOLVING

EXAMPLE 1 on p. 941
for Exs. 23-24
23. CIRCUITS A circuit has an alternating voltage of 100 volts that peaks every 0.5 second. Use the graph shown at the right to write a sinusoidal model for the voltage V as a function of the time t (in seconds).

TEXAS @HomeTutor for problem solving help at classzone.com

24. CLIMATOLOGY The graph below shows the average daily temperature of Houston, Texas. Write a sinusoidal model for the average daily temperature T (in degrees Fahrenheit) as a function of time t (in months).

TEXAS@HomeTutor for problem solving help at classzone.com

EXAMPLE 2

on p. 942
for Ex. 25
25. CIRCULAR MOTION One of the largest sewing machines in the world has a flywheel (which turns as the machine sews) that is 5 feet in diameter. Write a model for the height h (in feet) of the handle at the edge of the flywheel as a function of the time t (in seconds). Assume that the wheel makes a complete turn every 2 seconds and the handle is at its minimum height of 4 feet above the ground when $t=0$.

