SINUSOIDAL REGRESSION Another way to model sinusoids is to use a graphing calculator that has a sinusoidal regression feature. The advantage of this method is that it uses all of the data points to find the model.

EXAMPLE 3 Use sinusoidal regression

ENERGY The table below shows the number of kilowatt hours K (in thousands) used each month for a given year by a hangar at the Cape Canaveral Air Station in Florida. The time t is measured in months, with $t=1$ representing January. Write a trigonometric model that gives K as a function of t.

\boldsymbol{t}	1	2	3	4	5	6	7	8	9	10	11	12
\boldsymbol{K}	61.9	59	62	70.1	81.4	93.1	102.3	106.8	105.4	92.9	81.2	69.9

Solution

STEP 1
Enter the data in a graphing calculator.

STEP 2 Make a scatter plot.

STEP 3 Perform a sinusoidal regression, because the scatter plot appears sinusoidal.

STEP 4 Graph the model and the data in the same viewing window.

- The model appears to be a good fit. So, a model for the data is $K=23.9 \sin (0.533 t-2.69)+82.4$.

Guided Practice
for Example 3
4. METEOROLOGY Use a graphing calculator to write a sine model that gives the average daily temperature T (in degrees Fahrenheit) for Boston, Massachusetts, as a function of the time t (in months), where $t=1$ represents January.

\boldsymbol{t}	1	2	3	4	5	6	7	8	9	10	11	12
\boldsymbol{T}	29	32	39	48	59	68	74	72	65	54	45	35

