SINUSOIDAL REGRESSION Another way to model sinusoids is to use a graphing calculator that has a sinusoidal regression feature. The advantage of this method is that it uses all of the data points to find the model.

EXAMPLE 3 **Use sinusoidal regression**

ENERGY The table below shows the number of kilowatt hours *K* (in thousands) used each month for a given year by a hangar at the Cape Canaveral Air Station in Florida. The time *t* is measured in months, with t = 1 representing January. Write a trigonometric model that gives *K* as a function of *t*.

t	1	2	3	4	5	6	7	8	9	10	11	12
K	61.9	59	62	70.1	81.4	93.1	102.3	106.8	105.4	92.9	81.2	69.9

Solution

STEP 3

STEP 1 **Enter** the data in a graphing calculator.

STEP 2 Make a scatter plot.

Perform a sinusoidal regression, STEP 4 **Graph** the model and the because the scatter plot appears data in the same viewing window.

The model appears to be a good fit. So, a model for the data is $K = 23.9 \sin(0.533t - 2.69) + 82.4.$

GUIDED PRACTICE for Example 3

sinusoidal.

4. **METEOROLOGY** Use a graphing calculator to write a sine model that gives the average daily temperature T (in degrees Fahrenheit) for Boston, Massachusetts, as a function of the time *t* (in months), where t = 1represents January.

								7					
1	r	29	32	39	48	59	68	74	72	65	54	45	35