PROBLEM SOLVING WORKSHOP

LESSON 14.4

a.5, a.6, 2A.2.A;

 P.3.D

Another Way to Solve Example 3, page 932

MULTIIPLE REPRESENTATIONS In Example 3 on page 932, you solved a trigonometric equation algebraically. You can also solve a trigonometric equation using a table or using a graph.

PROBLEM

Using AVERNATHNENEHODS

OCEANOGRAPHY The water depth d for the Bay of Fundy can be modeled by

$$
d=35-28 \cos \frac{\pi}{6.2} t
$$

where d is measured in feet and t is the time in hours. If $t=0$ represents midnight, at what time(s) is the water depth 7 feet?

METHOD 1 Using a Table The problem requires solving the equation $35-28 \cos \frac{\pi}{6.2} t=7$. One way to solve this equation is to make a table of values. You can use a graphing calculator to make the table.

STEP 1 Enter the function $y=35-28 \cos \frac{\pi}{6.2} x$
into a graphing calculator. Note that time is now represented by x and water depth is now represented by y.

STEP 2 Make a table of values for the function. Set the table so that the x-values start at 0 and increase in increments of 0.1. (Be sure that the calculator is set in radian mode.)

STEP 3 Scroll through the table to find all the times x at which the water depth y is 7 feet. On the interval $0 \leq x \leq 24$ (which represents one full day), you can see that the function equals 7 when x is 0 and 12.4.

- The water depth is 7 feet when $x=0$ (that is, at midnight) and when $x=12.4$ (that is, at 12:24 P.M.).

