43. * MULTIPLE REPRESENTATIONS The surface area S of a honeycomb cell can be estimated by the equation shown at the right. In the equation, h is the height (in inches), s is the width of a side (in inches), and θ is the angle (in degrees) indicated in the diagram.
a. Using a Diagram Use the values of h and s in the diagram to simplify the equation.
b. Making a Table Use a graphing calculator to make a table for the function from part (a). For what value(s) of θ does $S=9$ square inches?

$\boldsymbol{s}=\boldsymbol{6} \boldsymbol{h} \boldsymbol{s}+\frac{\mathbf{3}}{\mathbf{2}} \boldsymbol{s}^{2}\left(\frac{\sqrt{3}-\cos \theta}{\sin \theta}\right)$
c. Drawing a Graph Use a graphing calculator to graph the function from part (a). What value of θ minimizes the surface area?
44. TAKS REASONING The power P (in watts) used by a microwave oven is the product of the voltage V (in volts) and the current I (in amperes). Suppose the voltage and current can be modeled by

$$
V=170 \cos 120 \pi t \quad \text { and } \quad I=11.3 \cos 120 \pi t
$$

where t is the time (in seconds).
a. Model Write the function $P(t)$ for the power used by the microwave.
b. Solve At what times does the microwave use 375 watts of power?
c. Graphing Calculator Graph the function $P(t)$. Describe how the graph differs from that of a cosine function of the form $y=a \cos b t$.
45. Challenge Matrix multiplication can be used to rotate a point (x, y) counterclockwise about the origin through an angle θ. The coordinates of the resulting point (x^{\prime}, y^{\prime}) are determined by the matrix equation shown at the right.
a. The point $(2,3)$ is rotated counterclockwise about the origin through an angle of $\frac{\pi}{3}$. What are the coordinates of the resulting point?
b. Through what angle θ must the point $(6,2)$ be rotated
 to produce $\left(x^{\prime}, y^{\prime}\right)=(3 \sqrt{3}-1, \sqrt{3}+3)$?

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

TAKS PRACTICE at classzone.com

REVIEW

Lesson 2.4;
TAKS Workbook

MIXED REVIEW FOR TAKS

46. TAKS PRACTICE The speed of a falling object increases 32 feet per second each second it falls. From a high cliff, Andrew throws an object downward with an initial speed of 8 feet per second. Which equation represents the speed s (in feet per second) of the falling object after t seconds? TAKS Obj. 1
(A) $s=-32 t+8$
(B) $s=32 t+8$
(C) $s=8 t+32$
(D) $s=32 t$

REVIEW

47. TAKS PRACTICE What are the coordinates of the y-intercept of the graph of $-3 x+4 y=24$? TAKS Obj. 3
(F) $(-8,0)$
(G) $\left(0, \frac{4}{3}\right)$
(H) $(0,6)$
(J) $(0,8)$
