EXAMPLES
5 and 6
on pp. 933-934
for Exs. 30-35

SOLVING Solve the equation in the given interval. Check your solutions.
30. $\sec x \csc ^{2} x=2 \sec x ; 0 \leq x<2 \pi$
31. $\sqrt{3} \cos ^{2} x=\cos ^{2} x \tan x ; 0 \leq x \leq \pi$
32. $2 \sin ^{2} x-\cos x-1=0 ; 0 \leq x<2 \pi$
33. $\sin ^{2} x+5 \sin x-3=0 ;-\frac{\pi}{2} \leq x<\frac{\pi}{2}$
34. $\tan ^{2} x-3 \tan x+2=0 ; 0 \leq x \leq \pi$
35. $\cos x+\sin x \tan x=2 ; \pi \leq x<2 \pi$
36. taks reasoning What are the points of intersection of the graphs of $y=4 \sin x+1$ and $y=2 \sin x+2$ on the interval $0 \leq x<2 \pi$?
(A) $\left(\frac{\pi}{6},-3\right),\left(\frac{\pi}{2},-3\right)$
(B) $\left(\frac{\pi}{6}, 3\right),\left(\frac{5 \pi}{6}, 3\right)$
(C) $\left(\frac{\pi}{2}, 3\right),\left(\frac{7 \pi}{6}, 3\right)$
(D) $\left(\frac{\pi}{6}, 3\right),\left(\frac{11 \pi}{6}, 3\right)$

INTERSECTION POINTS Find the points of intersection of the graphs of the given

 functions in the interval $0 \leq x<2 \pi$.37. $y=\cos ^{2} x$
$y=2 \cos x-1$
38. $y=9 \sin ^{2} x$
$y=\sin ^{2} x+8 \sin x-2$
39. $y=\sqrt{3} \tan ^{2} x$
$y=\sqrt{3}-2 \tan x$
40. Challenge A number c is a fixed point of a function f if $f(c)=c$. For example, 0 is a fixed point of $f(x)=\sin x$ because $f(0)=\sin 0=0$.
a. Reasoning Use graphs to explain why the function $g(x)=\cos x$ has only one fixed point.
b. Graphing Calculator Find the fixed point of $g(x)=\cos x$.

Problem Solving

EXAMPLE 3
on p. 932
for Exs. 41-42
41. WIND SPEED The average wind speed s (in miles per hour) in the Boston Harbor can be approximated by $s=3.38 \sin \frac{\pi}{180}(t+3)+11.6$ where t is the time in days, with $t=0$ representing January 1 . On which days of the year is the average wind speed 10 miles per hour?
TEXAS @HomeTutor for problem solving help at classzone.com
42. TAKS REASONING The number of degrees θ north of due east $(\theta>0)$ or south of due east $(\theta<0)$ that the sun rises in Cheyenne, Wyoming, can be modeled by

$$
\theta(t)=31 \sin \left(\frac{2 \pi}{365} t-1.4\right)
$$

where t is the time in days, with $t=1$ representing January 1 . Use an algebraic method to find at what day(s) the sun is 20° north of due east at sunrise. Explain how you can use the graph of $\theta(t)$ to check your answer.

TEXAS @HomeTutor for problem solving help at classzone.com

