SOLVING Solve the equation in the given interval. Check your solutions.

EXAMPLES 5 and 6 on pp. 933–934 for Exs. 30–35

30. $\sec x \csc^2 x = 2 \sec x; \ 0 \le x < 2\pi$ **31.** $\sqrt{3} \cos^2 x = \cos^2 x \tan x; \ 0 \le x \le \pi$ **32.** $2 \sin^2 x - \cos x - 1 = 0; \ 0 \le x < 2\pi$ **33.** $\sin^2 x + 5 \sin x - 3 = 0; \ -\frac{\pi}{2} \le x < \frac{\pi}{2}$ **34.** $\tan^2 x - 3 \tan x + 2 = 0; \ 0 \le x \le \pi$ **35.** $\cos x + \sin x \tan x = 2; \ \pi \le x < 2\pi$ **36.** Take peaconing. What are the points of intersection of the graphs of

36. TAKS REASONING What are the points of intersection of the graphs of $y = 4 \sin x + 1$ and $y = 2 \sin x + 2$ on the interval $0 \le x < 2\pi$?

	$\left(\frac{\pi}{6}, -3\right), \left(\frac{\pi}{2}, -3\right)$	B $\left(\frac{\pi}{6},3\right), \left(\frac{5\pi}{6},3\right)$
C	$\left(\frac{\pi}{2},3\right),\left(\frac{7\pi}{6},3\right)$	$\textcircled{D} \left(\frac{\pi}{6}, 3\right), \left(\frac{11\pi}{6}, 3\right)$

INTERSECTION POINTS Find the points of intersection of the graphs of the given functions in the interval $0 \le x < 2\pi$.

37. $y = \cos^2 x$	38. $y = 9 \sin^2 x$	39. $y = \sqrt{3} \tan^2 x$
$y = 2\cos x - 1$	$y = \sin^2 x + 8 \sin x - 2$	$y = \sqrt{3} - 2 \tan x$

- **40. CHALLENGE** A number *c* is a *fixed point* of a function f if f(c) = c. For example, 0 is a fixed point of $f(x) = \sin x$ because $f(0) = \sin 0 = 0$.
 - **a. Reasoning** Use graphs to explain why the function $g(x) = \cos x$ has only one fixed point.
 - **b.** Graphing Calculator Find the fixed point of $g(x) = \cos x$.

PROBLEM SOLVING

EXAMPLE 3 on p. 932 for Exs. 41–42 **41. WIND SPEED** The average wind speed *s* (in miles per hour) in the Boston Harbor can be approximated by $s = 3.38 \sin \frac{\pi}{180}(t+3) + 11.6$ where *t* is the time in days, with t = 0 representing January 1. On which days of the year is the average wind speed 10 miles per hour?

TEXAS @HomeTutor for problem solving help at classzone.com

42. TAKS REASONING The number of degrees θ north of due east ($\theta > 0$) or south of due east ($\theta < 0$) that the sun rises in Cheyenne, Wyoming, can be modeled by

$$\theta(t) = 31 \sin\left(\frac{2\pi}{365}t - 1.4\right)$$

where *t* is the time in days, with t = 1 representing January 1. Use an algebraic method to find at what day(s) the sun is 20° north of due east at sunrise. *Explain* how you can use the graph of $\theta(t)$ to check your answer.

TEXAS @HomeTutor for problem solving help at classzone.com

