EXTRANEOUS SOLUTIONS When solving a trigonometric equation, it is possible to obtain extraneous solutions. So, you should always check your solutions in the original equation.

EXAMPLE 6 Solve an equation with an extraneous solution

Solve $1+\cos x=\sin x$ in the interval $0 \leq x<2 \pi$.

$$
\begin{array}{rll}
1+\cos x & =\sin x & \text { Write original equation. } \\
(1+\cos x)^{2} & =(\sin x)^{2} & \text { Square both sides. } \\
1+2 \cos x+\cos ^{2} x & =\sin ^{2} x & \text { Multiply. } \\
1+2 \cos x+\cos ^{2} x=1-\cos ^{2} x & \text { Pythagorean identity } \\
2 \cos ^{2} x+2 \cos x=0 & \text { Quadratic form } \\
2 \cos x(\cos x+1)=0 & \text { Factor out } 2 \cos x . \\
2 \cos x=0 \quad \text { or } \quad \cos x+1=0 & \text { Zero product property } \\
\cos x=0 \quad \text { or } \quad \cos x=-1 & \text { Solve for } \cos x .
\end{array}
$$

On the interval $0 \leq x<2 \pi, \cos x=0$ has two solutions: $x=\frac{\pi}{2}$ or $x=\frac{3 \pi}{2}$.
On the interval $0 \leq x<2 \pi$, $\cos x=-1$ has one solution: $x=\pi$.
Therefore, $1+\cos x=\sin x$ has three possible solutions: $x=\frac{\pi}{2}, \pi$, and $\frac{3 \pi}{2}$.

CHECK
To check the solutions, substitute them into the original equation and simplify.

$$
\begin{array}{c|c|r}
1+\cos x=\sin x & 1+\cos x=\sin x & 1+\cos x=\sin x \\
1+\cos \frac{\pi}{2} \stackrel{?}{=} \sin \frac{\pi}{2} & 1+\cos \pi \stackrel{?}{=} \sin \pi & 1+\cos \frac{3 \pi}{2} \stackrel{?}{=} \sin \frac{3 \pi}{2} \\
1+0 \stackrel{?}{=} 1 & 1+(-1) \stackrel{?}{=} 0 & 1+0 \stackrel{?}{=}-1 \\
1=1 \checkmark & 0=0 \checkmark & 1 \neq-1
\end{array}
$$

- The apparent solution $x=\frac{3 \pi}{2}$ is extraneous because it does not check in the original equation. The only solutions in the interval $0 \leq x<2 \pi$ are $x=\frac{\pi}{2}$ and $x=\pi$. Graphs of each side of the original equation confirm the solutions.

Guided Practice for Examples 4, 5, and 6

Find the general solution of the equation.
4. $\sin ^{3} x-\sin x=0$
5. $1-\cos x=\sqrt{3} \sin x$

Solve the equation in the interval $0 \leq \boldsymbol{x} \leq \boldsymbol{\pi}$.
6. $2 \sin x=\csc x$
7. $\tan ^{2} x-\sin x \tan ^{2} x=0$

