- 1. Find the general solution of the equation $2 \sin x + 4 = 5$.
- **2.** Solve the equation $3 \csc^2 x = 4$ in the interval $0 \le x < 2\pi$.
- 3. OCEANOGRAPHY In Example 3, at what time(s) is the water depth 63 feet?

EXAMPLE 4 TAKS PRACTICE: Multiple Choice

What is the general solution of $\sin^3 x - 9 \sin x = 0$?

(A)
$$x = \frac{\pi}{2} + 2n\pi$$
 or $x = \frac{3\pi}{2} + 2n\pi$
(B) $x = \frac{\pi}{2} + 2n\pi$ or $x = \pi + 2n\pi$
(C) $x = \pi + 2n\pi$
(D) $x = 2n\pi$ or $x = \pi + 2n\pi$

Solution

$\sin^3 x - 9\sin x = 0$	Write original equation.
$\sin x \left(\sin^2 x - 9 \right) = 0$	Factor out sin x.
$\sin x \left(\sin x + 3 \right) \left(\sin x - 3 \right) = 0$	Factor difference of squares.

Set each factor equal to 0 and solve for *x*, if possible.

$\sin x = 0$	$\sin x + 3 = 0$	$\sin x - 3 = 0$
\rightarrow $x = 0 \text{ or } x = \pi$	$\sin x = -3$	$\sin x = 3$

SOLUTIONS Because sin *x* is never less than -1 or greater than 1, there are no solutions of sin x = -3

ELIMINATE

and sin x = 3.

The only solutions in the interval $0 \le x < 2\pi$ are x = 0 and $x = \pi$.

The general solution is $x = 2n\pi$ or $x = \pi + 2n\pi$ where *n* is any integer.

The correct answer is D. (A) (B) \bigcirc (D)

EXAMPLE 5 Use the quadratic formula

Solve $\cos^2 x - 5 \cos x + 2 = 0$ in the interval $0 \le x \le \pi$.

Solution

Because the equation is in the form $au^2 + bu + c = 0$ where $u = \cos x$, you can use the quadratic formula to solve for $\cos x$.

 $\cos^2 x - 5 \cos x + 2 = 0$ Write original equation. $\cos x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(2)}}{2(1)}$ Quadratic formula $= \frac{5 \pm \sqrt{17}}{2}$ Simplify. $\approx 4.56 \text{ or } 0.44$ Use a calculator. $x = \cos^{-1} 4.56$ $x = \cos^{-1} 0.44$ Use inverse cosine.No solution ≈ 1.12 Use a calculator, if possible.

In the interval $0 \le x \le \pi$, the only solution is $x \approx 1.12$.