## EXAMPLE 2 Solve a trigonometric equation in an interval

Solve $9 \tan ^{2} x+2=3$ in the interval $0 \leq x<2 \pi$.

$$
\begin{aligned}
9 \tan ^{2} x+2 & =3 & & \text { Write original equation. } \\
9 \tan ^{2} x & =1 & & \text { Subtract } 2 \text { from each side. } \\
\tan ^{2} x & =\frac{1}{9} & & \text { Divide each side by } 9 . \\
\tan x & = \pm \frac{1}{3} & & \text { Take square roots of each side. }
\end{aligned}
$$

REVIEW INVERSE FUNCTIONS For help with inverse trigonometric functions, see p. 875.

Using a calculator, you find that $\tan ^{-1} \frac{1}{3} \approx 0.322$ and $\tan ^{-1}\left(-\frac{1}{3}\right) \approx-0.322$.
Therefore, the general solution of the equation is:

$$
x \approx 0.322+n \pi \quad \text { or } \quad x \approx-0.322+n \pi \quad \text { (where } n \text { is any integer) }
$$

- The specific solutions in the interval $0 \leq x<2 \pi$ are:

$$
\begin{array}{ll}
x \approx 0.322 & x \approx-0.322+\pi \approx 2.820 \\
x \approx 0.322+\pi \approx 3.464 & x \approx-0.322+2 \pi \approx 5.961
\end{array}
$$

## EXAMPLE 3 Solve a real-life trigonometric equation

## ANOTHER WAY

For alternative methods for solving the problem in Example 3, turn to page 938 for the Problem Solving Workshop.

OCEANOGRAPHY The water depth $d$ for the Bay of Fundy can be modeled by

$$
d=35-28 \cos \frac{\pi}{6.2} t
$$

where $d$ is measured in feet and $t$ is the time in hours. If $t=0$ represents midnight, at what time(s) is the water depth 7 feet?


High tide


## Solution

Substitute 7 for $d$ in the model and solve for $t$.

$$
\begin{aligned}
35-28 \cos \frac{\pi}{6.2} t & =7 & & \text { Substitute } 7 \text { for } d . \\
-28 \cos \frac{\pi}{6.2} t & =-28 & & \text { Subtract } 35 \text { from each side. } \\
\cos \frac{\pi}{6.2} t & =1 & & \text { Divide each side by }-28 . \\
\frac{\pi}{6.2} t & =2 n \pi & & \cos \theta=1 \text { when } \theta=2 n \pi \\
t & =12.4 n & & \text { Solve for } t .
\end{aligned}
$$

- On the interval $0 \leq t \leq 24$ (representing one full day), the water depth is 7 feet when $t=12.4(0)=0$ (that is, at midnight) and when $t=12.4(1)=12.4$ (that is, at 12:24 P.M.).

