EXAMPLE 2 Solve a trigonometric equation in an interval

Solve 9 tan² x + 2 = 3 in the interval 0 $\leq x < 2\pi$.

- $9 \tan^2 x + 2 = 3$ Write original equation. $9 \tan^2 x = 1$ Subtract 2 from each side. $\tan^2 x = \frac{1}{9}$ Divide each side by 9. $\tan x = \pm \frac{1}{2}$ Take square roots of each side. **REVIEW INVERSE FUNCTIONS** Using a calculator, you find that $\tan^{-1}\frac{1}{3} \approx 0.322$ and $\tan^{-1}\left(-\frac{1}{3}\right) \approx -0.322$ For help with inverse trigonometric functions, Therefore, the general solution of the equation is: see p. 875. $x \approx 0.322 + n\pi$ $x \approx -0.322 + n\pi$ (where *n* is any integer) or The specific solutions in the interval $0 \le x < 2\pi$ are:
 - $x \approx 0.322$ $x \approx -0.322 + \pi \approx 2.820$ $x \approx 0.322 + \pi \approx 3.464$ $x \approx -0.322 + 2\pi \approx 5.961$

EXAMPLE 3 Solve a real-life trigonometric equation

OCEANOGRAPHY The water depth *d* for the Bay of Fundy can be modeled by

 $d = 35 - 28 \cos \frac{\pi}{6.2} t$

where *d* is measured in feet and *t* is the time in hours. If t = 0 represents midnight, at what time(s) is the water depth 7 feet?

ANOTHER WAY For alternative methods

for solving the problem in Example 3, turn

to page 938 for the **Problem Solving Workshop**. Substitute 7 for *d* in the model and solve for *t*.

$35 - 28\cos\frac{\pi}{6.2}t = 7$	Substitute 7 for <i>d</i> .
$-28\cos\frac{\pi}{6.2}t = -28$	Subtract 35 from each side.
$\cos\frac{\pi}{6.2}t = 1$	Divide each side by -28.
$\frac{\pi}{6.2}t = 2n\pi$	$\cos \theta = 1$ when $\theta = 2n\pi$.
t = 12.4n	Solve for <i>t</i> .

• On the interval $0 \le t \le 24$ (representing one full day), the water depth is 7 feet when t = 12.4(0) = 0 (that is, at midnight) and when t = 12.4(1) = 12.4 (that is, at 12:24 P.M.).

932 Chapter 14 Trigonometric Graphs, Identities, and Equations

Solution